論文の概要: Deep Legendre Transform
- arxiv url: http://arxiv.org/abs/2512.19649v1
- Date: Mon, 22 Dec 2025 18:22:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-23 18:54:32.876343
- Title: Deep Legendre Transform
- Title(参考訳): ディープレジェンダー変換
- Authors: Aleksey Minabutdinov, Patrick Cheridito,
- Abstract要約: 微分可能凸関数の凸共役を計算するための新しいディープラーニングアルゴリズムを提案する。
本手法は近似誤差の最小化のために,効率的な勾配に基づくフレームワークを提案する。
数値実験により,高次元の異なる実例に対して精度の高い結果が得られることを示した。
- 参考スコア(独自算出の注目度): 0.7734726150561086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel deep learning algorithm for computing convex conjugates of differentiable convex functions, a fundamental operation in convex analysis with various applications in different fields such as optimization, control theory, physics and economics. While traditional numerical methods suffer from the curse of dimensionality and become computationally intractable in high dimensions, more recent neural network-based approaches scale better, but have mostly been studied with the aim of solving optimal transport problems and require the solution of complicated optimization or max-min problems. Using an implicit Fenchel formulation of convex conjugation, our approach facilitates an efficient gradient-based framework for the minimization of approximation errors and, as a byproduct, also provides a posteriori error estimates for the approximation quality. Numerical experiments demonstrate our method's ability to deliver accurate results across different high-dimensional examples. Moreover, by employing symbolic regression with Kolmogorov--Arnold networks, it is able to obtain the exact convex conjugates of specific convex functions.
- Abstract(参考訳): 本稿では,異なる凸関数の凸共役を計算するための新しいディープラーニングアルゴリズムを提案する。これは,最適化,制御理論,物理,経済学など,さまざまな分野の様々な応用における凸解析の基本的な操作である。
従来の数値法は次元の呪いに悩まされ、高次元で計算的に難解になるが、より最近のニューラルネットワークベースのアプローチはより良くスケールするが、主に最適な輸送問題の解決と複雑な最適化や最大最小問題の解を求めるために研究されてきた。
凸共役の暗黙的なフェンシェル定式化を用いて,近似誤差の最小化のための効率的な勾配に基づくフレームワークを提案し,副生成物として近似品質の後方誤差推定も提供する。
数値実験により,高次元の異なる実例に対して精度の高い結果が得られることを示した。
さらに、コルモゴロフ-アルノルドネットワークによるシンボリック回帰を用いることで、特定の凸関数の正確な凸共役を得ることができる。
関連論文リスト
- Neural Optimal Transport Meets Multivariate Conformal Prediction [58.43397908730771]
条件付きベクトル回帰(CVQR)のためのフレームワークを提案する。
CVQRは、ニューラルネットワークの最適輸送と量子化された最適化を組み合わせて、予測に適用する。
論文 参考訳(メタデータ) (2025-09-29T19:50:19Z) - Verification of Geometric Robustness of Neural Networks via Piecewise Linear Approximation and Lipschitz Optimisation [57.10353686244835]
我々は、回転、スケーリング、せん断、翻訳を含む入力画像の幾何学的変換に対するニューラルネットワークの検証の問題に対処する。
提案手法は, 分枝・分枝リプシッツと組み合わせたサンプリングおよび線形近似を用いて, 画素値に対する楽音線形制約を求める。
提案手法では,既存の手法よりも最大32%の検証ケースが解決されている。
論文 参考訳(メタデータ) (2024-08-23T15:02:09Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Consistent Approximations in Composite Optimization [0.0]
我々は最適化問題の一貫した近似のためのフレームワークを開発する。
このフレームワークは幅広い最適化のために開発されている。
プログラム解析法は、拡張非線形プログラミングソリューションを例証する。
論文 参考訳(メタデータ) (2022-01-13T23:57:08Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Convex Optimization with an Interpolation-based Projection and its
Application to Deep Learning [36.19092177858517]
提案手法は,不正確なが,より安価な投影法により,降下アルゴリズムを最適に駆動できるかどうかを考察する。
具体的には,凸,領域定義,関数が与えられた場合,計算コストが低く,計算が容易な非コンパクトなプロジェクションを提案する。
論文 参考訳(メタデータ) (2020-11-13T16:52:50Z) - Ideal formulations for constrained convex optimization problems with
indicator variables [2.578242050187029]
本研究では,指標変数と指標に対する制約を用いた凸最適化問題のクラスを凸化することを検討した。
スパース回帰問題の凸化に関する従来の研究とは異なり、非線形非分離対象、指標変数、制約を同時に検討する。
階層性,多行性,空間性制約といった問題に対する理想的な凸化を導出する。
論文 参考訳(メタデータ) (2020-06-30T21:07:10Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。