論文の概要: Canonical correlation regression with noisy data
- arxiv url: http://arxiv.org/abs/2512.22697v1
- Date: Sat, 27 Dec 2025 20:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-30 22:37:30.181015
- Title: Canonical correlation regression with noisy data
- Title(参考訳): 雑音データによる正準相関回帰
- Authors: Isaac Meza, Rahul Singh,
- Abstract要約: スペクトル正則化を用いた2段最小二乗に基づく推定器群の解析を行う。
理論的貢献として,推定誤差の上限と下限を導出し,ノイズデータを用いた手法の最適性を示す。
実践的な貢献として、異なる体制で使用するスペクトル正則化のタイプについてガイダンスを提供する。
- 参考スコア(独自算出の注目度): 1.8620637029128544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study instrumental variable regression in data rich environments. The goal is to estimate a linear model from many noisy covariates and many noisy instruments. Our key assumption is that true covariates and true instruments are repetitive, though possibly different in nature; they each reflect a few underlying factors, however those underlying factors may be misaligned. We analyze a family of estimators based on two stage least squares with spectral regularization: canonical correlations between covariates and instruments are learned in the first stage, which are used as regressors in the second stage. As a theoretical contribution, we derive upper and lower bounds on estimation error, proving optimality of the method with noisy data. As a practical contribution, we provide guidance on which types of spectral regularization to use in different regimes.
- Abstract(参考訳): データリッチ環境におけるインストゥルメンタル変数回帰について検討する。
目標は、多くの雑音の共変量と多くの雑音の楽器から線形モデルを推定することである。
私たちのキーとなる仮定は、真の共変量と真の楽器は、本質的には異なるかもしれないが反復的であるということである。
スペクトル正則化を伴う2段最小二乗法に基づく推定器群を解析し、第1段において共変量と楽器の正準相関を学習し、第2段において回帰器として用いる。
理論的貢献として,推定誤差の上下境界を導出し,ノイズデータを用いた手法の最適性を示す。
実践的な貢献として、異なる体制で使用するスペクトル正則化のタイプについてガイダンスを提供する。
関連論文リスト
- Benign Overfitting and the Geometry of the Ridge Regression Solution in Binary Classification [75.01389991485098]
リッジ回帰はクラスタ平均ベクトルのスケールによって定性的に異なる挙動を示す。
スケールが非常に大きいレジームでは、良心過剰を許容する条件は回帰タスクと同一であることが判明した。
論文 参考訳(メタデータ) (2025-03-11T01:45:42Z) - Effective Causal Discovery under Identifiable Heteroscedastic Noise Model [45.98718860540588]
因果DAG学習は、最近精度と効率の両面で有望な性能を達成した。
本稿では,変数間のノイズ分散の変動を考慮したDAG学習のための新しい定式化を提案する。
次に、最適化の難しさに対処する効果的な2相反復DAG学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-20T08:51:58Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Robust Inference of Manifold Density and Geometry by Doubly Stochastic
Scaling [8.271859911016719]
我々は高次元雑音下で頑健な推論のためのツールを開発する。
提案手法は, セルタイプにまたがる技術的ノイズレベルの変動に頑健であることを示す。
論文 参考訳(メタデータ) (2022-09-16T15:39:11Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Understanding the Under-Coverage Bias in Uncertainty Estimation [58.03725169462616]
量子レグレッションは、現実の望ましいカバレッジレベルよりもアンファンダーカバー(enmphunder-cover)する傾向がある。
我々は、量子レグレッションが固有のアンダーカバーバイアスに悩まされていることを証明している。
我々の理論は、この過大被覆バイアスが特定の高次元パラメータ推定誤差に起因することを明らかにしている。
論文 参考訳(メタデータ) (2021-06-10T06:11:55Z) - Detecting Label Noise via Leave-One-Out Cross Validation [0.0]
クリーンなサンプルと破損したサンプルの混合から実値のノイズラベルを同定し,修正するための簡単なアルゴリズムを提案する。
独立分散を伴う付加的なガウス雑音項をそれぞれと観測されたラベルに関連付けるヘテロ代用ノイズモデルを用いる。
提案手法は, 合成および実世界の科学データを用いた学習において, 劣化したサンプルを特定でき, より良い回帰モデルが得られることを示す。
論文 参考訳(メタデータ) (2021-03-21T10:02:50Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
生成ガウス混合モデルに基づく二項線形分類について検討する。
後者の分類誤差に関する新しい非漸近境界を導出する。
この結果は, 確率が一定である雑音モデルに拡張される。
論文 参考訳(メタデータ) (2020-11-18T07:59:55Z) - Minimax Quasi-Bayesian estimation in sparse canonical correlation
analysis via a Rayleigh quotient function [1.0878040851638]
スパース標準ベクトルに対する既存の速度-最適推定器は計算コストが高い。
本稿では,最小推定率を達成する準ベイズ推定手法を提案する。
提案手法を用いて臨床変数とプロテオミクスデータを最大に相関させ,Covid-19 病の理解を深める。
論文 参考訳(メタデータ) (2020-10-16T21:00:57Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
この動作を駆動するトレーニングデータの2つの重要な特性を特定します。
モデルの"記憶"に対する帰納的バイアスが,パラメータ化の超過を損なう可能性を示す。
論文 参考訳(メタデータ) (2020-05-09T01:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。