論文の概要: Driver-Intention Prediction with Deep Learning: Real-Time Brain-to-Vehicle Communication
- arxiv url: http://arxiv.org/abs/2601.05084v1
- Date: Thu, 08 Jan 2026 16:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-09 17:01:53.279127
- Title: Driver-Intention Prediction with Deep Learning: Real-Time Brain-to-Vehicle Communication
- Title(参考訳): ディープラーニングによるドライバー意図予測:リアルタイム脳-車間通信
- Authors: Niloufar Alavi, Swati Shah, Rezvan Alamian, Stefan Goetz,
- Abstract要約: 本研究では,脳波(EEG)信号を用いた運転者のハンドル操作意図の予測手法を提案する。
運転シミュレーターは、参加者が様々な運転シナリオで車両を制御することを想像する制御環境を作った。
畳み込みニューラルネットワーク(CNN)は、検出された脳波データを最小の事前処理で分類した。
- 参考スコア(独自算出の注目度): 2.7998963147546143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-computer interfaces (BCIs) allow direct communication between the brain and electronics without the need for speech or physical movement. Such interfaces can be particularly beneficial in applications requiring rapid response times, such as driving, where a vehicle's advanced driving assistance systems could benefit from immediate understanding of a driver's intentions. This study presents a novel method for predicting a driver's intention to steer using electroencephalography (EEG) signals through deep learning. A driving simulator created a controlled environment in which participants imagined controlling a vehicle during various driving scenarios, including left and right turns, as well as straight driving. A convolutional neural network (CNN) classified the detected EEG data with minimal pre-processing. Our model achieved an accuracy of 83.7% in distinguishing between the three steering intentions and demonstrated the ability of CNNs to process raw EEG data effectively. The classification accuracy was highest for right-turn segments, which suggests a potential spatial bias in brain activity. This study lays the foundation for more intuitive brain-to-vehicle communication systems.
- Abstract(参考訳): 脳-コンピュータインタフェース(BCI)は、音声や身体の動きを必要とせず、脳と電子の直接通信を可能にする。
このようなインタフェースは、運転などの迅速な応答時間を必要とするアプリケーションにおいて特に有用であり、車両の高度な運転支援システムは、運転者の意図を即座に理解することの恩恵を受けることができる。
本研究では,脳波(EEG)信号を用いた運転者のハンドル操作意図の予測手法を提案する。
運転シミュレーターは、左右の曲がり角や直線運転を含む様々な運転シナリオにおいて、参加者が車両を制御することを想像する制御環境を作った。
畳み込みニューラルネットワーク(CNN)は、検出された脳波データを最小の事前処理で分類した。
本モデルでは,3つの操舵意図の区別において83.7%の精度を達成し,CNNが生脳波データを効率的に処理できることを実証した。
分類精度は右旋回セグメントが最も高く、脳活動における空間バイアスの可能性が示唆された。
本研究は、より直感的な車間通信システムの基礎を築いた。
関連論文リスト
- Masked EEG Modeling for Driving Intention Prediction [27.606175591082756]
本稿では,BCI支援運転における新たな研究方向を開拓し,運転意図に関連する神経パターンについて検討する。
本研究では,左旋回,右旋回,ストレート進行といった人間の運転意図を予測する新しい脳波モデリングフレームワークを提案する。
本モデルでは, 運転意図予測時に85.19%の精度を達成し, 交通事故の軽減に期待できる可能性を示した。
論文 参考訳(メタデータ) (2024-08-08T03:49:05Z) - DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving [65.04871316921327]
本稿では,自律運転システムの性能と信頼性を高める新しい自律運転システムを提案する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
このデータセットを利用することで、論理的思考プロセスを通じて高精度な計画精度を実現する。
論文 参考訳(メタデータ) (2024-01-08T03:06:02Z) - Improving automatic detection of driver fatigue and distraction using
machine learning [0.0]
運転者の疲労と注意をそらした運転は交通事故の重要な要因である。
本稿では,視覚に基づくアプローチと機械学習に基づくアプローチを用いて,疲労と注意をそらした運転行動の同時検出手法を提案する。
論文 参考訳(メタデータ) (2024-01-04T06:33:46Z) - FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
本稿では、自律型小型RCカーを強化学習(RL)を用いた視覚的観察から積極的に駆動するシステムを提案する。
我々のシステムであるFastRLAP (faster lap)は、人間の介入なしに、シミュレーションや専門家によるデモンストレーションを必要とせず、現実世界で自律的に訓練する。
結果として得られたポリシーは、タイミングブレーキや回転の加速度などの突発的な運転スキルを示し、ロボットの動きを妨げる領域を避け、トレーニングの途中で同様の1対1のインタフェースを使用して人間のドライバーのパフォーマンスにアプローチする。
論文 参考訳(メタデータ) (2023-04-19T17:33:47Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - EEG-based Classification of Drivers Attention using Convolutional Neural
Network [0.0]
本研究は、参加者の脳活動に基づいて訓練された注意分類器の性能を比較した。
審美的フィードバック下で得られた生脳波データに基づいて訓練したCNNモデルは,89%の精度を達成できた。
この結果から,CNNおよび生脳波信号は受動的BCIの訓練に有効であることが示唆された。
論文 参考訳(メタデータ) (2021-08-23T10:55:52Z) - Brain-Inspired Deep Imitation Learning for Autonomous Driving Systems [0.38673630752805443]
ヒトは、脳の両側の構造的および機能的非対称性から恩恵を受ける強力な一般化能力を持つ。
そこで我々は,人間のニューラルネットワークの非対称性に基づいて,ディープニューラルネットワークにおけるデュアルニューラルネットワークポリシー(NCP)アーキテクチャを設計する。
実験の結果,脳にインスパイアされた手法は,見えないデータを扱う場合の一般化に関する既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-30T14:21:46Z) - Driving Style Representation in Convolutional Recurrent Neural Network
Model of Driver Identification [8.007800530105191]
運転スタイルのための高忠実度表現を構築するために,D-CRNNと呼ばれるディープ・ニューラル・ネットワークアーキテクチャを提案する。
CNNを用いて、軌道からの運転行動の意味的パターンをキャプチャする。
次に、RNNを用いて駆動スタイルをエンコードするこれらのセマンティックパターン間の時間的依存関係を見つけ出す。
論文 参考訳(メタデータ) (2021-02-11T04:33:43Z) - Intelligent Roundabout Insertion using Deep Reinforcement Learning [68.8204255655161]
本稿では,多忙なラウンドアバウンドの入場を交渉できる演習計画モジュールを提案する。
提案されたモジュールは、トレーニングされたニューラルネットワークに基づいて、操作の全期間にわたって、ラウンドアバウンドに入るタイミングと方法を予測する。
論文 参考訳(メタデータ) (2020-01-03T11:16:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。