論文の概要: An adjoint method for training data-driven reduced-order models
- arxiv url: http://arxiv.org/abs/2601.07579v1
- Date: Mon, 12 Jan 2026 14:30:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:01.44365
- Title: An adjoint method for training data-driven reduced-order models
- Title(参考訳): データ駆動型低次モデル学習のための随伴法
- Authors: Donglin Liu, Francisco García Atienza, Mengwu Guo,
- Abstract要約: 本稿では,連続時間型演算子推論を随伴状態法と組み合わせて,ロバストなデータ駆動型減階モデルを得るためのトレーニングフレームワークを提案する。
本研究では,2つの摂動条件下での標準作用素推定,すなわち時間的スナップショット密度の低減と加法的ガウス雑音の体系的比較を行う。
- 参考スコア(独自算出の注目度): 0.22940141855172028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reduced-order modeling lies at the interface of numerical analysis and data-driven scientific computing, providing principled ways to compress high-fidelity simulations in science and engineering. We propose a training framework that couples a continuous-time form of operator inference with the adjoint-state method to obtain robust data-driven reduced-order models. This method minimizes a trajectory-based loss between reduced-order solutions and projected snapshot data, which removes the need to estimate time derivatives from noisy measurements and provides intrinsic temporal regularization through time integration. We derive the corresponding continuous adjoint equations to compute gradients efficiently and implement a gradient based optimizer to update the reduced model parameters. Each iteration only requires one forward reduced order solve and one adjoint solve, followed by inexpensive gradient assembly, making the method attractive for large-scale simulations. We validate the proposed method on three partial differential equations: viscous Burgers' equation, the two-dimensional Fisher-KPP equation, and an advection-diffusion equation. We perform systematic comparisons against standard operator inference under two perturbation regimes, namely reduced temporal snapshot density and additive Gaussian noise. For clean data, both approaches deliver similar accuracy, but in situations with sparse sampling and noise, the proposed adjoint-based training provides better accuracy and enhanced roll-out stability.
- Abstract(参考訳): 数値解析とデータ駆動型科学計算のインターフェース上には低次モデリングがあり、科学と工学において高忠実度シミュレーションを圧縮する原理的な方法を提供している。
本稿では,連続時間型演算子推論を随伴状態法と組み合わせて,ロバストなデータ駆動型減階モデルを得るためのトレーニングフレームワークを提案する。
本手法は,低次解と投影スナップショットデータの間の軌跡に基づく損失を最小限に抑え,ノイズ測定から時間微分を推定する必要性を排除し,時間積分による固有時間正規化を提供する。
本研究では, 対応する連続随伴方程式を導出し, 勾配を効率よく計算し, 縮退したモデルパラメータを更新する勾配ベース最適化器を実装した。
各イテレーションは1つの前方縮小順序解と1つの随伴解しか必要とせず、続いて安価な勾配組立を伴い、大規模シミュレーションに魅力的な方法となっている。
本研究では, 粘性バーガース方程式, 二次元フィッシャー-KPP方程式, 対流拡散方程式の3つの偏微分方程式に対して提案手法を検証した。
本研究では,2つの摂動条件下での標準作用素推定,すなわち時間的スナップショット密度の低減と加法的ガウス雑音の体系的比較を行う。
クリーンなデータでは、どちらの手法も同様の精度を提供するが、スパースサンプリングとノイズのある状況では、提案した随伴型トレーニングにより、より精度が高く、ロールアウト安定性が向上する。
関連論文リスト
- Self-Supervised Coarsening of Unstructured Grid with Automatic Differentiation [55.88862563823878]
本研究では,微分可能物理の概念に基づいて,非構造格子を階層化するアルゴリズムを提案する。
多孔質媒質中のわずかに圧縮可能な流体流を制御した線形方程式と波動方程式の2つのPDE上でのアルゴリズムの性能を示す。
その結果,検討したシナリオでは,関心点におけるモデル変数のダイナミクスを保ちながら,格子点数を最大10倍に削減した。
論文 参考訳(メタデータ) (2025-07-24T11:02:13Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Differentiable DG with Neural Operator Source Term Correction [0.0]
圧縮可能なNavier-Stokes方程式を解くためのエンドツーエンドの微分可能なフレームワークを提案する。
この統合アプローチは、微分可能不連続なガレルキン解法とニューラルネットワークのソース項を組み合わせる。
提案するフレームワークの性能を2つの例で示す。
論文 参考訳(メタデータ) (2023-10-29T04:26:23Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
本稿では,各ステップごとに1つのデータポイントしか必要としない2つの単一スケールシングルループアルゴリズムを提案する。
本研究の結果は, 同時一次および二重側収束の形で表される。
論文 参考訳(メタデータ) (2020-08-23T20:36:49Z) - A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
Balance Communication Overhead, Computational Complexity, and Convergence
Rate [28.167294398293297]
通信負荷の少ない分散勾配降下法(SGD)を提案する。
各イテレーションにおける計算複雑性を低減するために、ワーカノードは、方向微分をゼロ階勾配推定で近似する。
論文 参考訳(メタデータ) (2020-03-27T14:02:15Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
本稿では,コントローラの空間を直接探索することにより,未知の計算系に対する最適制御を求める。
我々は、安定化フィードバックゲインの勾配-フローのダイナミクスセットに焦点をあてて、そのような手法の性能と効率を最小化するための一歩を踏み出した。
論文 参考訳(メタデータ) (2019-12-26T16:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。