論文の概要: Integrating Attendance Tracking and Emotion Detection for Enhanced Student Engagement in Smart Classrooms
- arxiv url: http://arxiv.org/abs/2601.08049v1
- Date: Mon, 12 Jan 2026 22:38:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:18.972393
- Title: Integrating Attendance Tracking and Emotion Detection for Enhanced Student Engagement in Smart Classrooms
- Title(参考訳): スマート教室における学生エンゲージメント向上のための参加者追跡と感情検出の統合
- Authors: Keith Ainebyona, Ann Move Oguti, Joseph Walusimbi, Ritah Kobusingye,
- Abstract要約: 本稿では,自動出席追跡と顔の感情認識を統合し,教室での参加監視を支援するIoTシステムを提案する。
このシステムは、顔検出にRaspberry PiカメラとOpenCVを使用し、微調整されたMobileNetV2モデルを使用して、4つの学習関連感情状態(エンゲージメント、退屈、混乱、フラストレーション)を分類する。
その結果, 参加者データと感情分析を組み合わせることで, 教師は教室のダイナミクスに関するさらなる洞察を得ることができ, より応答性の高い授業実践を支援することができた。
- 参考スコア(独自算出の注目度): 0.6749750044497732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing adoption of smart classroom technologies in higher education has mainly focused on automating attendance, with limited attention given to students' emotional and cognitive engagement during lectures. This limits instructors' ability to identify disengagement and adapt teaching strategies in real time. This paper presents SCASED (Smart Classroom Attendance System with Emotion Detection), an IoT-based system that integrates automated attendance tracking with facial emotion recognition to support classroom engagement monitoring. The system uses a Raspberry Pi camera and OpenCV for face detection, and a finetuned MobileNetV2 model to classify four learning-related emotional states: engagement, boredom, confusion, and frustration. A session-based mechanism is implemented to manage attendance and emotion monitoring by recording attendance once per session and performing continuous emotion analysis thereafter. Attendance and emotion data are visualized through a cloud-based dashboard to provide instructors with insights into classroom dynamics. Experimental evaluation using the DAiSEE dataset achieved an emotion classification accuracy of 89.5%. The results show that integrating attendance data with emotion analytics can provide instructors with additional insight into classroom dynamics and support more responsive teaching practices.
- Abstract(参考訳): 高等教育におけるスマート教室技術の普及は、主に出席の自動化に焦点が当てられ、講義中の生徒の感情的・認知的エンゲージメントに限られた注意が向けられている。
これにより、インストラクターが解脱を識別し、リアルタイムで指導戦略を適応する能力を制限する。
本稿では,自動出席追跡と顔の感情認識を統合し,教室のエンゲージメントモニタリングを支援するIoTシステムであるSCASED(Smart Classroom Attendance System with Emotion Detection)を提案する。
このシステムは、顔検出にRaspberry PiカメラとOpenCVを使用し、微調整されたMobileNetV2モデルを使用して、4つの学習関連感情状態(エンゲージメント、退屈、混乱、フラストレーション)を分類する。
セッション毎に一度の出席を記録し、その後の連続的な感情分析を行うことで、出席状況と感情のモニタリングを管理するセッションベース機構を実装した。
参加者と感情データは、クラウドベースのダッシュボードを通じて視覚化され、インストラクターに教室のダイナミクスに関する洞察を提供する。
DAiSEEデータセットを用いた実験的評価により、感情分類精度は89.5%に達した。
その結果, 参加者データと感情分析を組み合わせることで, 教師は教室のダイナミクスに関するさらなる洞察を得ることができ, より応答性の高い授業実践を支援することができた。
関連論文リスト
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talkは、感情と同一性を切り離し、類似した特徴を持つ感情を協調するフレームワークである。
我々は、モーダル・アテンションを通して、音声と視覚の感情の手がかりを共同でモデル化するアンタングル型感情埋め込み装置を開発した。
次に,学習可能な感情バンクを用いた相関強化感情調和モジュールを提案する。
第3に、拡散過程における感情の一貫性を強制する感情識別目標を設計する。
論文 参考訳(メタデータ) (2025-04-25T05:28:21Z) - Contrastive Decoupled Representation Learning and Regularization for Speech-Preserving Facial Expression Manipulation [58.189703277322224]
音声保存表情操作(SPFEM)は、特定の参照感情を表示するために話頭を変更することを目的としている。
参照およびソース入力に存在する感情とコンテンツ情報は、SPFEMモデルに対して直接的かつ正確な監視信号を提供することができる。
コントラスト学習による指導として、コンテンツと感情の事前学習を提案し、分離されたコンテンツと感情表現を学習する。
論文 参考訳(メタデータ) (2025-04-08T04:34:38Z) - Emotion Detection through Body Gesture and Face [0.0]
このプロジェクトは、非顔の手がかり、特に手、身体のジェスチャー、ジェスチャーに焦点を当てることによる感情認識の課題に対処する。
従来の感情認識システムは、主に表情分析に依存しており、ボディランゲージを通して伝達される豊かな感情情報を無視することが多い。
このプロジェクトの目的は、マシンが人間の感情をより包括的でニュアンスな方法で解釈し、反応する能力を高めることで、感情コンピューティングの分野に貢献することにある。
論文 参考訳(メタデータ) (2024-07-13T15:15:50Z) - SensEmo: Enabling Affective Learning through Real-time Emotion Recognition with Smartwatches [3.7303587372123315]
SensEmoは、感情学習用に設計されたスマートウォッチベースのシステムだ。
SensEmoは学生の感情を88.9%の精度で認識している。
SensEmoは、学生がより良いオンライン学習結果を達成するのを助ける。
論文 参考訳(メタデータ) (2024-07-13T15:10:58Z) - Enhancing Student Engagement in Online Learning through Facial
Expression Analysis and Complex Emotion Recognition using Deep Learning [1.3812010983144802]
本稿では,オンライン学習セッションにおける学生のエンゲージメントレベルを評価するために,表情に基づく深層学習技術を用いた新しいアプローチを提案する。
この課題に対処するため、基本的な感情を組み合わせることで、混乱、満足度、失望、フラストレーションなどの4つの複雑な感情の生成を提案した。
提案手法は畳み込みニューラルネットワーク(CNN)モデルを用いて学習者の基本的な感情状態を正確に分類する。
論文 参考訳(メタデータ) (2023-11-17T06:07:54Z) - Unsupervised Representations Improve Supervised Learning in Speech
Emotion Recognition [1.3812010983144798]
本研究では,小さな音声セグメントからの感情認識のための自己教師付き特徴抽出と教師付き分類を統合した革新的なアプローチを提案する。
事前処理では,Wav2Vecモデルに基づく自己教師付き特徴抽出器を用いて音声データから音響特徴を抽出した。
次に、前処理ステップの出力特徴マップを、カスタム設計の畳み込みニューラルネットワーク(CNN)ベースのモデルに入力し、感情分類を行う。
論文 参考訳(メタデータ) (2023-09-22T08:54:06Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
Wits Intelligent Teaching System (WITS) は、学生の感情に関するリアルタイムフィードバックを講師に支援することを目的としている。
AlexNetベースのCNNはトレーニングが成功し、Support Vector Machineアプローチを大きく上回っている。
論文 参考訳(メタデータ) (2021-05-28T12:59:37Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
本稿では,きめ細かな感情の埋め込み表現を生成するための,新しいディープラーニングフレームワークを提案する。
本フレームワークは,コンテキスト型埋め込みエンコーダとマルチヘッド探索モデルを統合する。
本モデルは共感対話データセット上で評価され,32種類の感情を分類する最新結果を示す。
論文 参考訳(メタデータ) (2021-04-20T16:55:15Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。