論文の概要: Simple Models, Rich Representations: Visual Decoding from Primate Intracortical Neural Signals
- arxiv url: http://arxiv.org/abs/2601.11108v1
- Date: Fri, 16 Jan 2026 09:10:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-19 20:21:50.423925
- Title: Simple Models, Rich Representations: Visual Decoding from Primate Intracortical Neural Signals
- Title(参考訳): シンプルなモデルとリッチ表現:原始皮質内神経信号からの視覚的デコード
- Authors: Matteo Ciferri, Matteo Ferrante, Nicola Toschi,
- Abstract要約: 霊長類の高密度皮質内記録から視覚情報を復号する問題に対処する。
我々は,低分解能遅延再構成と意味的条件付き拡散を組み合わせたモジュラー生成復号パイプラインを開発した。
このフレームワークは、ブレイン・コンピュータ・インタフェースとセマンティック・ニューラル・デコーディングの原則を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding how neural activity gives rise to perception is a central challenge in neuroscience. We address the problem of decoding visual information from high-density intracortical recordings in primates, using the THINGS Ventral Stream Spiking Dataset. We systematically evaluate the effects of model architecture, training objectives, and data scaling on decoding performance. Results show that decoding accuracy is mainly driven by modeling temporal dynamics in neural signals, rather than architectural complexity. A simple model combining temporal attention with a shallow MLP achieves up to 70% top-1 image retrieval accuracy, outperforming linear baselines as well as recurrent and convolutional approaches. Scaling analyses reveal predictable diminishing returns with increasing input dimensionality and dataset size. Building on these findings, we design a modular generative decoding pipeline that combines low-resolution latent reconstruction with semantically conditioned diffusion, generating plausible images from 200 ms of brain activity. This framework provides principles for brain-computer interfaces and semantic neural decoding.
- Abstract(参考訳): 神経活動がどのように知覚を引き起こすかを理解することは神経科学における中心的な課題である。
我々は、THINGS Ventral Stream Spiking Datasetを用いて、霊長類の高密度皮質内記録から視覚情報を復号する問題に対処する。
モデルアーキテクチャ、トレーニング目標、データスケーリングがデコード性能に与える影響を系統的に評価する。
その結果、デコード精度は、アーキテクチャ上の複雑さではなく、主に神経信号の時間的ダイナミクスをモデル化することによって引き起こされることがわかった。
時間的注意と浅いMLPを組み合わせた単純なモデルでは、最大70%のトップ-1画像の検索精度が達成され、線形ベースラインを上回り、再帰的および畳み込み的アプローチが実現される。
スケール分析により、入力次元とデータセットサイズが増大するにつれて、予測可能な減少するリターンが明らかになる。
これらの知見に基づいて,低分解能潜時再構成と意味的条件付き拡散を組み合わせ,200ミリ秒の脳活動から可塑性画像を生成するモジュール生成復号パイプラインを設計した。
このフレームワークは、ブレイン・コンピュータ・インタフェースとセマンティック・ニューラル・デコーディングの原則を提供する。
関連論文リスト
- Moving Beyond Diffusion: Hierarchy-to-Hierarchy Autoregression for fMRI-to-Image Reconstruction [65.67001243986981]
我々は,スケールワイド自己回帰モデルに基づく粗大なfMRI画像再構成フレームワークであるMindHierを提案する。
MindHierは、拡散ベースのベースラインよりも優れたセマンティック忠実さ、4.67倍高速な推論、より決定論的結果を達成する。
論文 参考訳(メタデータ) (2025-10-25T15:40:07Z) - Whole-brain Transferable Representations from Large-Scale fMRI Data Improve Task-Evoked Brain Activity Decoding [3.416130444086009]
本稿では,大規模なfMRIデータセットから変換可能な表現を学習する変換器モデルSTDA-SwiFTを提案する。
本研究では,タスク誘発活動の下流復号性能を大幅に向上することを示す。
我々の研究は、fMRIデータから脳活動を復号する際の課題を克服するために、トランスファーラーニングを実行可能なアプローチとして示している。
論文 参考訳(メタデータ) (2025-07-30T04:36:58Z) - TokenUnify: Scaling Up Autoregressive Pretraining for Neuron Segmentation [65.65530016765615]
本稿では,3つの相補的な学習目標を通じて,大規模依存関係をキャプチャする階層型予測コーディングフレームワークを提案する。
TokenUnifyは、ランダムトークン予測、次のトークン予測、およびすべてのトークン予測を統合して、包括的な表現空間を作成する。
また,120億個の注釈付きボクセルを付加した大規模EMデータセットを導入し,空間連続性を持つ理想的な長周期視覚データを提供する。
論文 参考訳(メタデータ) (2024-05-27T05:45:51Z) - See Through Their Minds: Learning Transferable Neural Representation from Cross-Subject fMRI [32.40827290083577]
機能的磁気共鳴イメージング(fMRI)からの視覚内容の解読は、人間の視覚系を照らすのに役立つ。
従来のアプローチは主に、トレーニングサンプルサイズに敏感な、主題固有のモデルを採用していた。
本稿では,fMRIデータを統合表現にマッピングするための,サブジェクト固有の浅層アダプタを提案する。
トレーニング中,マルチモーダル脳復号における視覚的・テキスト的監督の両面を活用する。
論文 参考訳(メタデータ) (2024-03-11T01:18:49Z) - Deep Learning for real-time neural decoding of grasp [0.0]
本稿では,ニューラルネットワークの復号化のためのDeep Learningに基づく手法を提案する。
提案手法の主な目的は、これまでの神経科学知識に頼ることなく、最先端の復号精度を改善することである。
論文 参考訳(メタデータ) (2023-11-02T08:26:29Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
我々はfMRIデコーディングと符号化の両方に対処する統合フレームワークを導入する。
本モデルでは、fMRI信号から視覚刺激を同時に回復し、統合された枠組み内の画像から脳活動を予測する。
論文 参考訳(メタデータ) (2023-03-26T14:14:58Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。