論文の概要: A Dynamic Framework for Grid Adaptation in Kolmogorov-Arnold Networks
- arxiv url: http://arxiv.org/abs/2601.18672v1
- Date: Mon, 26 Jan 2026 16:49:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 15:23:08.945071
- Title: A Dynamic Framework for Grid Adaptation in Kolmogorov-Arnold Networks
- Title(参考訳): Kolmogorov-Arnoldネットワークにおけるグリッド適応のための動的フレームワーク
- Authors: Spyros Rigas, Thanasis Papaioannou, Panagiotis Trakadas, Georgios Alexandridis,
- Abstract要約: Kolmogorov-Arnold Networks (KAN)は先頃、科学的機械学習の有望な可能性を実証した。
重要密度関数(IDF)が支配する密度推定タスクとして結び目割り当てを扱うフレームワークを提案する。
曲率に基づく適応戦略を導入し,合成関数の適合性,Feynmanデータセットのサブセットへの回帰,およびHelmholtz PDEの異なるインスタンスについて評価する。
- 参考スコア(独自算出の注目度): 5.856842269946816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) have recently demonstrated promising potential in scientific machine learning, partly due to their capacity for grid adaptation during training. However, existing adaptation strategies rely solely on input data density, failing to account for the geometric complexity of the target function or metrics calculated during network training. In this work, we propose a generalized framework that treats knot allocation as a density estimation task governed by Importance Density Functions (IDFs), allowing training dynamics to determine grid resolution. We introduce a curvature-based adaptation strategy and evaluate it across synthetic function fitting, regression on a subset of the Feynman dataset and different instances of the Helmholtz PDE, demonstrating that it significantly outperforms the standard input-based baseline. Specifically, our method yields average relative error reductions of 25.3% on synthetic functions, 9.4% on the Feynman dataset, and 23.3% on the PDE benchmark. Statistical significance is confirmed via Wilcoxon signed-rank tests, establishing curvature-based adaptation as a robust and computationally efficient alternative for KAN training.
- Abstract(参考訳): Kolmogorov-Arnold Networks (KANs)は先頃、トレーニング中のグリッド適応能力が理由のひとつとして、科学的機械学習の有望な可能性を実証した。
しかし、既存の適応戦略は入力データ密度のみに依存しており、ネットワークトレーニング中に計算されたターゲット関数やメトリクスの幾何学的複雑さを考慮できない。
本研究では,重要度密度関数 (IDF) が支配する密度推定タスクとして結び目割り当てを扱う汎用フレームワークを提案する。
曲率に基づく適応戦略を導入し,FeynmanデータセットのサブセットとHelmholtz PDEの異なるインスタンスに対する回帰を総合的に評価し,標準入力ベースラインを著しく上回ることを示す。
具体的には、合成関数の平均相対誤差は25.3%、Feynmanデータセットは9.4%、PDEベンチマークは23.3%である。
統計学的意義はウィルコクソンのサインランク試験によって確認され、カントレーニングの頑健で計算学的に効率的な代替品として曲率に基づく適応を確立した。
関連論文リスト
- Mean flow data assimilation using physics-constrained Graph Neural Networks [0.0]
本研究では,グラフニューラルネットワーク(GNN)と最適化手法を統合し,平均流路復元の精度を高める新しいデータ同化手法を提案する。
GNNフレームワークは非構造化データを扱うのに適しており、計算流体力学(CFD)で遭遇する複雑な測地に共通している。
その結果,データ駆動モデルに類似するモデルと比較して,訓練データに制限がある場合でも,平均フロー再構成の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
本稿では,PE-GNNと量子ニューラルネットワーク,部分的に単調なニューラルブロック,ポストホックリカレーション技術を組み合わせた新しいフレームワークを提案する。
PE-GQNNは、ターゲット分布に関する最小の仮定で柔軟で堅牢な条件密度推定を可能にし、空間データを超えたタスクに自然に拡張する。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Neural variational Data Assimilation with Uncertainty Quantification using SPDE priors [28.804041716140194]
ディープラーニングコミュニティの最近の進歩は、ニューラルネットワークと変分データ同化フレームワークを通じて、この問題に対処することができる。
本研究では、部分微分方程式(SPDE)とガウス過程(GP)の理論を用いて状態の空間的および時間的共分散を推定する。
論文 参考訳(メタデータ) (2024-02-02T19:18:12Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
相関に基づくステレオマッチングは優れた性能を達成した。
固定モデルによる現在のメソッドは、さまざまなデータセットで均一に動作しない。
本稿では,ロバストなステレオマッチングのための相関を動的に計算する新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-26T09:47:37Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
局所近似過程回帰を用いて特定のひずみ空間における応力出力を予測する方法を示す。
FE設定におけるグローバル構造問題を解決する場合のlaGPR近似の局所的性質に適応するために、修正されたニュートン・ラフソン手法が提案される。
論文 参考訳(メタデータ) (2021-05-07T14:49:28Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
グラフニューラルネットワーク(GNN)における適応接続サンプリングのための統一的なフレームワークを提案する。
提案フレームワークは,深部GNNの過度なスムース化や過度に適合する傾向を緩和するだけでなく,グラフ解析タスクにおけるGNNによる不確実性の学習を可能にする。
論文 参考訳(メタデータ) (2020-06-07T07:06:35Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。