論文の概要: XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction
- arxiv url: http://arxiv.org/abs/2601.19037v1
- Date: Mon, 26 Jan 2026 23:40:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.097268
- Title: XIMP: Cross Graph Inter-Message Passing for Molecular Property Prediction
- Title(参考訳): XIMP: 分子特性予測のためのクロスグラフ間パス
- Authors: Anatol Ehrlich, Lorenz Kummer, Vojtech Voracek, Franka Bause, Nils M. Kriege,
- Abstract要約: 我々は、複数の関連するグラフ表現内および横断的なメッセージパッシングを行うクロスグラフ・インターメッセージパッシング(XIMP)を導入する。
小分子の場合、分子グラフと足場を意識した接合木と薬理泳動をエンコードした縮小グラフを組み合わせる。
- 参考スコア(独自算出の注目度): 5.6164728691396775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate molecular property prediction is central to drug discovery, yet graph neural networks often underperform in data-scarce regimes and fail to surpass traditional fingerprints. We introduce cross-graph inter-message passing (XIMP), which performs message passing both within and across multiple related graph representations. For small molecules, we combine the molecular graph with scaffold-aware junction trees and pharmacophore-encoding extended reduced graphs, integrating complementary abstractions. While prior work is either limited to a single abstraction or non-iterative communication across graphs, XIMP supports an arbitrary number of abstractions and both direct and indirect communication between them in each layer. Across ten diverse molecular property prediction tasks, XIMP outperforms state-of-the-art baselines in most cases, leveraging interpretable abstractions as an inductive bias that guides learning toward established chemical concepts, enhancing generalization in low-data settings.
- Abstract(参考訳): 正確な分子特性予測は薬物発見の中心であるが、グラフニューラルネットワークはデータスカース方式では性能が劣り、従来の指紋を超えないことが多い。
我々は、複数の関連するグラフ表現内および横断的なメッセージパッシングを行うクロスグラフ・インターメッセージパッシング(XIMP)を導入する。
小分子に対しては、分子グラフと足場を意識した接合木と、薬理泳動をエンコードした縮小グラフを組み合わせ、相補的な抽象化を統合する。
XIMPは任意の数の抽象化をサポートし、各レイヤ間の直接的および間接的なコミュニケーションをサポートします。
10種類の分子特性予測タスクにおいて、XIMPは、ほとんどのケースにおいて最先端のベースラインより優れており、解釈可能な抽象化を、確立された化学概念への学習を導く帰納バイアスとして活用し、低データ設定における一般化を高めている。
関連論文リスト
- Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - HiGraphDTI: Hierarchical Graph Representation Learning for Drug-Target Interaction Prediction [15.005837084219355]
階層型グラフ表現学習に基づくDTI予測法(HiGraphDTI)を提案する。
具体的には、HiGraphDTIは三重レベル分子グラフから階層的な薬物表現を学び、原子、モチーフ、分子に埋め込まれた化学情報を徹底的に活用する。
注目特徴融合モジュールは、異なる受容領域からの情報を組み込んで表現対象特徴を抽出する。
論文 参考訳(メタデータ) (2024-04-16T13:35:24Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
分子グラフ表現を改善するために,コミュニケーティブメッセージパッシングトランス (CoMPT) ニューラルネットワークを提案する。
分子を完全連結グラフとして扱う従来のトランスフォーマースタイルのGNNとは異なり、グラフ接続帰納バイアスを利用するメッセージ拡散機構を導入する。
論文 参考訳(メタデータ) (2021-07-19T11:58:32Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
薬物標的結合親和性予測に適したDiStance-aware Molecule graph Attention Network (S-MAN)を提案する。
そこで,我々はまず,構築したポケットリガンドグラフに位相構造と空間位置情報を統合する位置符号化機構を提案する。
また,エッジレベルアグリゲーションとノードレベルアグリゲーションを有するエッジノード階層的アグリゲーション構造を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:44:01Z) - Neural Message Passing on High Order Paths [4.273470365293033]
グラフニューラルネットを一般化してメッセージの送信と高次パスへの集約を行う。
これにより、情報はグラフの様々なレベルやサブ構造を伝播することができる。
論文 参考訳(メタデータ) (2020-02-24T17:58:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。