論文の概要: Nonlocal Kramers-Moyal formulas and data-driven discovery of stochastic dynamical systems with multiplicative Lévy noise
- arxiv url: http://arxiv.org/abs/2601.19223v1
- Date: Tue, 27 Jan 2026 05:44:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.194946
- Title: Nonlocal Kramers-Moyal formulas and data-driven discovery of stochastic dynamical systems with multiplicative Lévy noise
- Title(参考訳): 非局所クラマース-モーラル公式と乗法的レヴィ雑音をもつ確率力学系のデータ駆動的発見
- Authors: Yang Li, Jinqiao Duan,
- Abstract要約: 我々は、データからすべての管理コンポーネントを同時に識別できる新しいデータ駆動アルゴリズムを開発した。
この研究は、複雑なシステムを管理する解釈可能なSDEモデルを発見するための、原則的で実用的なツールボックスを提供する。
- 参考スコア(独自算出の注目度): 2.3951444869691594
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional data-driven methods, effective for deterministic systems or stochastic differential equations (SDEs) with Gaussian noise, fail to handle the discontinuous sample paths and heavy-tailed fluctuations characteristic of Lévy processes, particularly when the noise is state-dependent. To bridge this gap, we establish nonlocal Kramers-Moyal formulas, rigorously generalizing the classical Kramers-Moyal relations to SDEs with multiplicative Lévy noise. These formulas provide a direct link between short-time transition probability densities (or sample path statistics) and the underlying SDE coefficients: the drift vector, diffusion matrix, Lévy jump measure kernel, and Lévy noise intensity functions. Leveraging these theoretical foundations, we develop novel data-driven algorithms capable of simultaneously identifying all governing components from data and establish convergence results and error analysis for the algorithms. We validate the framework through extensive numerical experiments on prototypical systems. This work provides a principled and practical toolbox for discovering interpretable SDE models governing complex systems influenced by discontinuous, heavy-tailed, state-dependent fluctuations, with broad applicability in climate science, neuroscience, epidemiology, finance, and biological physics.
- Abstract(参考訳): 従来のデータ駆動法は、ガウス雑音を伴う決定論的システムや確率微分方程式(SDE)に有効であり、特にノイズが状態依存である場合、不連続なサンプルパスとLévyプロセスに特徴的な重み付き揺らぎを扱うことができない。
このギャップを埋めるために、非局所クラマース-モヤル公式を確立し、乗法的レヴィ雑音を持つSDEに対する古典的クラマース-モヤル関係を厳密に一般化する。
これらの公式は、短時間の遷移確率密度(またはサンプルパス統計)と基礎となるSDE係数(ドリフトベクトル、拡散行列、レヴィジャンプ測度核、レヴィノイズ強度関数)の直接的なリンクを提供する。
これらの理論基盤を活用することで、データからすべての管理コンポーネントを同時に識別し、アルゴリズムの収束結果とエラー解析を確立することができる新しいデータ駆動アルゴリズムを開発した。
原型システムに関する広範な数値実験により,その枠組みを検証した。
この研究は、気候科学、神経科学、疫学、ファイナンス、生物物理学に広く適用可能な、不連続、重尾、状態依存の変動に影響される複雑なシステムを管理する解釈可能なSDEモデルを発見するための、原則的で実用的なツールボックスを提供する。
関連論文リスト
- Expanding the Chaos: Neural Operator for Stochastic (Partial) Differential Equations [65.80144621950981]
我々はWienerカオス拡張(WCE)に基づいて、SPDEとSDEのためのニューラル演算子(NO)アーキテクチャを設計する。
WCEベースのニューラル演算子は、SDE/SPDEソリューション演算子を学習するための実用的でスケーラブルな方法を提供する。
論文 参考訳(メタデータ) (2026-01-03T00:59:25Z) - Discovering Governing Equations in the Presence of Uncertainty [11.752763800308276]
本研究では, 力学系を基礎とする支配方程式を一貫して発見する鍵として, 測定ノイズとともに, システムの変動性を考慮した説明が重要であることを理論的に論じる。
SIPは、スパース同定ダイナミクス(SINDy)とその変種に対する平均82%の正方程式を一貫して同定することを示した。
論文 参考訳(メタデータ) (2025-07-13T18:31:25Z) - A Data-Driven Framework for Discovering Fractional Differential Equations in Complex Systems [8.206685537936078]
本研究では、データから直接分数微分方程式(FDE)を発見するための段階的なデータ駆動フレームワークを提案する。
我々のフレームワークは、スパース観測とノイズ観測の分離と再構成のための代理モデルとしてディープニューラルネットワークを適用している。
本研究は, 凍結土壌のクリープ挙動に関する, 合成異常拡散データおよび実験データを含む, 各種データセットにわたるフレームワークの検証を行った。
論文 参考訳(メタデータ) (2024-12-05T08:38:30Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes [7.103713918313219]
条件付き独立性(CI)の制約を、選択した間隔で調整する。
我々は,完全かつ完全な因果探索アルゴリズムを提案し,完全な観測データと部分的な観測データの両方を扱えるようにした。
また、これらの制約をデータから推測するために、フレキシブルで一貫したカーネルベースのCIテストを提案する。
論文 参考訳(メタデータ) (2024-02-28T16:58:31Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
ノイズの多いデータセットから規制法則を抽出する新しいデータ駆動手法を開発した。
まず, ドリフト係数, 拡散係数, ジャンプ測度を表現し, 実現可能な理論的枠組みを確立する。
そこで我々は, ドリフト, 拡散係数, ジャンプ測度を計算する数値アルゴリズムを設計し, ガウス雑音および非ガウス雑音による支配方程式を抽出する。
論文 参考訳(メタデータ) (2020-05-07T21:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。