論文の概要: Identifiable Equivariant Networks are Layerwise Equivariant
- arxiv url: http://arxiv.org/abs/2601.21645v1
- Date: Thu, 29 Jan 2026 12:47:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.818232
- Title: Identifiable Equivariant Networks are Layerwise Equivariant
- Title(参考訳): 同定可能な同変ネットワークは階層的同変である
- Authors: Vahid Shahverdi, Giovanni Luca Marchetti, Georg Bökman, Kathlén Kohn,
- Abstract要約: 本研究では,ディープニューラルネットワークにおけるエンド・ツー・エンドの等式と層間等式の関係について検討する。
本結果は,トレーニング中のニューラルネットワークの重みにおける等変構造の出現を数学的に説明するものである。
- 参考スコア(独自算出の注目度): 12.83273311392079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the relation between end-to-end equivariance and layerwise equivariance in deep neural networks. We prove the following: For a network whose end-to-end function is equivariant with respect to group actions on the input and output spaces, there is a parameter choice yielding the same end-to-end function such that its layers are equivariant with respect to some group actions on the latent spaces. Our result assumes that the parameters of the model are identifiable in an appropriate sense. This identifiability property has been established in the literature for a large class of networks, to which our results apply immediately, while it is conjectural for others. The theory we develop is grounded in an abstract formalism, and is therefore architecture-agnostic. Overall, our results provide a mathematical explanation for the emergence of equivariant structures in the weights of neural networks during training -- a phenomenon that is consistently observed in practice.
- Abstract(参考訳): 本研究では,ディープニューラルネットワークにおけるエンド・ツー・エンドの等式と層間等式の関係について検討する。
入力および出力空間上の群作用に対して、エンドツーエンド関数が同変であるネットワークに対して、その層が潜在空間上の群作用に対して同変であるように、同じエンドツーエンド関数を生成するパラメータ選択が存在する。
この結果は,モデルのパラメータが適切な意味で識別可能であることを仮定する。
この識別性特性は、大規模ネットワークの文献において確立されており、その結果は直ちに適用され、他者にとっては好ましくないものである。
私たちが開発する理論は抽象的な形式主義に根ざしており、従ってアーキテクチャに依存しない。
全体として、我々の結果は、トレーニング中にニューラルネットワークの重みに同変構造が出現する数学的説明を提供する。
関連論文リスト
- Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
論文 参考訳(メタデータ) (2024-05-12T22:18:25Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
回転同変ネットワークは、連結コンパクト群に対して同変である任意のネットワークに対してのみ不変であることを示す。
本稿では, 畳み込み可能な畳み込み型ニューラルネットワークの特徴空間が, 自明な表現であることを示す。
論文 参考訳(メタデータ) (2024-01-17T14:30:46Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Self-Supervised Learning for Group Equivariant Neural Networks [75.62232699377877]
群同変ニューラルネットワーク(英: Group equivariant Neural Network)は、入力の変換で通勤する構造に制限されたモデルである。
自己教師型タスクには、同変プリテキストラベルと異変コントラスト損失という2つの概念を提案する。
標準画像認識ベンチマークの実験では、同変ニューラルネットワークが提案された自己教師型タスクを利用することを示した。
論文 参考訳(メタデータ) (2023-03-08T08:11:26Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
グループ内ハードアライメント機構を組み込んだ,新しいグループ同変アーキテクチャを提案する。
我々のネットワーク構造は、既存のグループ同変アプローチよりも強い同変特性を発達させることができる。
また、SCANタスクにおいて、従来のグループ同変ネットワークよりも経験的に優れていたことが判明した。
論文 参考訳(メタデータ) (2022-09-22T11:19:45Z) - Bispectral Neural Networks [1.0323063834827415]
ニューラルネットワークアーキテクチャBNN(Bispectral Neural Networks)を提案する。
BNNは、群、その既約表現、および対応する同変写像と完全不変写像を同時に学習することができる。
論文 参考訳(メタデータ) (2022-09-07T18:34:48Z) - Equivariance and generalization in neural networks [0.0]
ネットワーク特性間の翻訳的等式を組み込んだ結果に焦点をあてる。
等変ネットワークの利点は、複素スカラー場の理論を研究することによって実証される。
ほとんどのタスクにおいて、最良の同変アーキテクチャは、非同変アーキテクチャよりもはるかに優れた性能と一般化を達成できる。
論文 参考訳(メタデータ) (2021-12-23T12:38:32Z) - Generalization capabilities of neural networks in lattice applications [0.0]
翻訳等変ニューラルネットワークを用いた非同変ニューラルネットワークの利点について検討する。
我々の最良の同変アーキテクチャは、その非同変アーキテクチャよりも大幅に性能を向上し、一般化できることが示される。
論文 参考訳(メタデータ) (2021-12-23T11:48:06Z) - Topographic VAEs learn Equivariant Capsules [84.33745072274942]
本稿では, 地理的に整理された潜伏変数を用いた深部生成モデルを効率的に学習するための新しい手法であるTopographic VAEを紹介する。
このようなモデルでは,MNIST上での桁数クラス,幅,スタイルなどの健全な特徴に応じて,その活性化を組織化することが実際に学べることが示される。
我々は、既存の群同変ニューラルネットワークの能力を拡張して、複素変換に近似した同値性を示す。
論文 参考訳(メタデータ) (2021-09-03T09:25:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。