論文の概要: Manifold-Aware Perturbations for Constrained Generative Modeling
- arxiv url: http://arxiv.org/abs/2601.23151v1
- Date: Fri, 30 Jan 2026 16:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-02 18:28:15.561586
- Title: Manifold-Aware Perturbations for Constrained Generative Modeling
- Title(参考訳): 制約付き生成モデルのためのマニフォールド対応摂動
- Authors: Katherine Keegan, Lars Ruthotto,
- Abstract要約: 等式制約付き生成モデルにおいて、既知の落とし穴と戦うために、計算的に安価で、数学的に正当化され、高度に柔軟な分布修正を開発する。
本研究では,拡散モデルと正規化フローを併用して,データの分散回復と安定したサンプリングを一貫して実現することを示す。
- 参考スコア(独自算出の注目度): 1.6431177510318926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models have enjoyed widespread success in a variety of applications. However, they encounter inherent mathematical limitations in modeling distributions where samples are constrained by equalities, as is frequently the setting in scientific domains. In this work, we develop a computationally cheap, mathematically justified, and highly flexible distributional modification for combating known pitfalls in equality-constrained generative models. We propose perturbing the data distribution in a constraint-aware way such that the new distribution has support matching the ambient space dimension while still implicitly incorporating underlying manifold geometry. Through theoretical analyses and empirical evidence on several representative tasks, we illustrate that our approach consistently enables data distribution recovery and stable sampling with both diffusion models and normalizing flows.
- Abstract(参考訳): 生成モデルは様々なアプリケーションで広く成功している。
しかし、これらは、サンプルが等式によって制約されるような分布のモデル化において固有の数学的制限に直面する。
本研究では,等式制約付き生成モデルにおいて既知の落とし穴と戦うために,計算的に安価で,数学的に正当化され,高度に柔軟な分布修正を開発する。
本稿では,新しい分布が空間次元の整合をサポートするとともに,基礎となる多様体の幾何を暗黙的に組み込むような制約を考慮したデータ分布の摂動について提案する。
いくつかの代表的タスクに関する理論的解析と実証的証拠を通じて,本手法は拡散モデルと正規化フローの両方を用いて,データの分散回復と安定したサンプリングを可能にすることを実証した。
関連論文リスト
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
量子離散化拡散確率モデル(QD3PM)を提案する。
これは、指数関数的に大きなヒルベルト空間における拡散と denoising を通じて合同確率学習を可能にする。
本稿では,共同分布学習における量子的優位性を生かして,生成モデルの新たな理論的パラダイムを確立する。
論文 参考訳(メタデータ) (2025-05-08T11:48:21Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
一般のスコアミスマッチ拡散サンプリング器に対する明示的な次元依存性を持つ最初の性能保証を示す。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Physics-Informed Diffusion Models [0.0]
生成モデルと偏微分方程式の充足を統一する枠組みを提案する。
本手法は,流体流動ケーススタディにおける従来の研究と比較して,残差を最大2桁まで低減する。
論文 参考訳(メタデータ) (2024-03-21T13:52:55Z) - Unveil Conditional Diffusion Models with Classifier-free Guidance: A Sharp Statistical Theory [87.00653989457834]
条件付き拡散モデルは現代の画像合成の基礎となり、計算生物学や強化学習などの分野に広く応用されている。
経験的成功にもかかわらず、条件拡散モデルの理論はほとんど欠落している。
本稿では,条件拡散モデルを用いた分布推定の急激な統計的理論を提示することにより,ギャップを埋める。
論文 参考訳(メタデータ) (2024-03-18T17:08:24Z) - Convergence Analysis of Discrete Diffusion Model: Exact Implementation
through Uniformization [17.535229185525353]
連続マルコフ連鎖の均一化を利用したアルゴリズムを導入し、ランダムな時間点の遷移を実装した。
我々の結果は、$mathbbRd$における拡散モデルの最先端の成果と一致し、さらに$mathbbRd$設定と比較して離散拡散モデルの利点を浮き彫りにする。
論文 参考訳(メタデータ) (2024-02-12T22:26:52Z) - Statistically Optimal Generative Modeling with Maximum Deviation from the Empirical Distribution [2.1146241717926664]
本稿では, 左非可逆なプッシュフォワード写像に制約されたワッサーシュタインGANが, 複製を回避し, 経験的分布から著しく逸脱する分布を生成することを示す。
我々の最も重要な寄与は、生成分布と経験的分布の間のワッサーシュタイン-1距離の有限サンプル下界を与える。
また、生成分布と真のデータ生成との距離に有限サンプル上限を確立する。
論文 参考訳(メタデータ) (2023-07-31T06:11:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。