論文の概要: Optimizing Chlorination in Water Distribution Systems via Surrogate-assisted Neuroevolution
- arxiv url: http://arxiv.org/abs/2602.07299v1
- Date: Sat, 07 Feb 2026 01:16:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.559638
- Title: Optimizing Chlorination in Water Distribution Systems via Surrogate-assisted Neuroevolution
- Title(参考訳): 代理型神経進化による配水システムの塩素化の最適化
- Authors: Rivaaj Monsia, Daniel Young, Olivier Francon, Risto Miikkulainen,
- Abstract要約: 本稿では, 大規模不均質配水系統の維持管理のための進化的枠組みを提案する。
ニューラルネットワークはNEATで進化し、特定のタイミングで分配ネットワーク内の戦略的場所に塩素を注入した。
NSGA-IIは、注入された塩素の総量を最小限に抑え、ネットワーク全体で塩素濃度を均一に保ち、定期的に注入を分配する4つの目的を最適化するために使用された。
- 参考スコア(独自算出の注目度): 9.671308520548232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring the microbiological safety of large, heterogeneous water distribution systems (WDS) typically requires managing appropriate levels of disinfectant residuals including chlorine. WDS include complex fluid interactions that are nonlinear and noisy, making such maintenance a challenging problem for traditional control algorithms. This paper proposes an evolutionary framework to this problem based on neuroevolution, multi-objective optimization, and surrogate modeling. Neural networks were evolved with NEAT to inject chlorine at strategic locations in the distribution network at select times. NSGA-II was employed to optimize four objectives: minimizing the total amount of chlorine injected, keeping chlorine concentrations homogeneous across the network, ensuring that maximum concentrations did not exceed safe bounds, and distributing the injections regularly over time. Each network was evaluated against a surrogate model, i.e. a neural network trained to emulate EPANET, an industry-level hydraulic WDS simulator that is accurate but infeasible in terms of computational cost to support machine learning. The evolved controllers produced a diverse range of Pareto-optimal policies that could be implemented in practice, outperforming standard reinforcement learning methods such as PPO. The results thus suggest a pathway toward improving urban water systems, and highlight the potential of using evolution with surrogate modeling to optimize complex real-world systems.
- Abstract(参考訳): 大規模な不均一配水システム(WDS)の微生物学的安全性を確保するには、通常、塩素を含む消毒剤の適切なレベルを管理する必要がある。
WDSには非線形でノイズの多い複雑な流体相互作用が含まれており、従来の制御アルゴリズムではそのような保守が難しい問題となっている。
本稿では,神経進化,多目的最適化,代理モデルに基づく進化的枠組みを提案する。
ニューラルネットワークはNEATで進化し、特定のタイミングで分配ネットワーク内の戦略的場所に塩素を注入した。
NSGA-IIは、注入された塩素の総量を最小限に抑え、ネットワーク全体で塩素濃度を均一に保ち、最大濃度が安全な境界を超えないようにし、定期的に注入を分配する4つの目的を最適化するために使用された。
それぞれのネットワークは、サロゲートモデル、すなわち産業レベルのWDSシミュレータEPANETをエミュレートするために訓練されたニューラルネットワークに対して評価された。
進化したコントローラは、PPOのような標準的な強化学習方法よりも優れた、実践可能なパレート最適化ポリシーを多種多様に生成した。
以上の結果から, 都市水システムの改善への道筋が示唆され, 複雑な実世界のシステムを最適化するために, 代理モデルによる進化の可能性を浮き彫りにしている。
関連論文リスト
- Iterative Refinement of Flow Policies in Probability Space for Online Reinforcement Learning [56.47948583452555]
固定ステップのEulerスキームによるフローマッチング推論プロセスの離散化は,最適輸送から変化するJordan-Kinderlehrer-Otto原理と整合する,というキーインサイトに基づいて,SWFP(Stepwise Flow Policy)フレームワークを紹介した。
SWFPは、大域的な流れを、プロキシメート分布間の小さな漸進的な変換の列に分解する。
この分解は、小さな流れブロックのカスケードを介して事前訓練された流れを微調整する効率的なアルゴリズムを導き、大きな利点をもたらす。
論文 参考訳(メタデータ) (2025-10-17T07:43:51Z) - Underwater Soft Fin Flapping Motion with Deep Neural Network Based Surrogate Model [0.31457219084519]
本研究では、深部ニューラルネットワーク(DNN)に基づく代理モデルと強化学習(RL)を組み合わせることにより、フィン作動型水中ロボットの精密力制御のための新しい枠組みを提案する。
水中環境との複雑な相互作用と高い実験コストに対処するため、代理モデルがRLエージェントの効率的な訓練を可能にするシミュレータとして機能する。
論文 参考訳(メタデータ) (2025-02-05T12:57:53Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
本稿では,ペロブスカイト・メムリスタの製作を同時に最適化し,ロバストなアナログDNNを開発するための相乗的手法を提案する。
BO誘導ノイズインジェクションを利用したトレーニング戦略であるBayesMultiを開発した。
我々の統合されたアプローチは、より深くより広いネットワークでのアナログコンピューティングの使用を可能にし、最大100倍の改善を実現します。
論文 参考訳(メタデータ) (2024-12-03T19:20:08Z) - Advanced deep-reinforcement-learning methods for flow control: group-invariant and positional-encoding networks improve learning speed and quality [0.7421845364041001]
本研究は,流路制御のための深部強化学習法(DRL)の進歩である。
グループ不変ネットワークと位置エンコーディングをDRLアーキテクチャに統合することに注力する。
提案手法はRayleigh-B'enard対流のケーススタディを用いて検証した。
論文 参考訳(メタデータ) (2024-07-25T07:24:41Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Closed-form control with spike coding networks [1.1470070927586016]
スパイキングニューラルネットワーク(SNN)を用いた効率的かつ堅牢な制御は、依然として未解決の問題である。
スパイク符号化ネットワーク(SCN)の神経科学理論を,クローズドフォームの最適推定と制御を取り入れて拡張する。
模擬スプリング・マス・ダンパーおよびカート・ポールシステムのロバストなスパイク制御を実証した。
論文 参考訳(メタデータ) (2022-12-25T10:32:20Z) - Distributed neural network control with dependability guarantees: a
compositional port-Hamiltonian approach [0.0]
大規模なサイバー物理システムは、制御ポリシーが分散されていること、すなわち、ローカルなリアルタイム測定と近隣エージェントとの通信にのみ依存することを要求する。
最近の研究でニューラルネットワーク(NN)分散コントローラのトレーニングが提案されている。
NNコントローラの主な課題は、トレーニング中と後、すなわちクローズドループシステムは不安定であり、勾配の消失と爆発によってトレーニングが失敗する可能性があることである。
論文 参考訳(メタデータ) (2021-12-16T17:37:11Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。