論文の概要: Anomaly Detection with Machine Learning Algorithms in Large-Scale Power Grids
- arxiv url: http://arxiv.org/abs/2602.10888v1
- Date: Wed, 11 Feb 2026 14:17:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-12 21:44:01.988004
- Title: Anomaly Detection with Machine Learning Algorithms in Large-Scale Power Grids
- Title(参考訳): 大規模電力グリッドにおける機械学習アルゴリズムによる異常検出
- Authors: Marc Gillioz, Guillaume Dubuis, Étienne Voutaz, Philippe Jacquod,
- Abstract要約: 大規模高電圧電力グリッドの運用データにおける異常検出問題に対して,機械学習アルゴリズムを適用した。
アルゴリズムの性能における重要な違いを観察する。
教師なし学習アルゴリズムは極めてうまく機能し、それらの予測は同時並行的な異常に対して頑健であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We apply several machine learning algorithms to the problem of anomaly detection in operational data for large-scale, high-voltage electric power grids. We observe important differences in the performance of the algorithms. Neural networks typically outperform classical algorithms such as k-nearest neighbors and support vector machines, which we explain by the strong contextual nature of the anomalies. We show that unsupervised learning algorithm work remarkably well and that their predictions are robust against simultaneous, concurring anomalies.
- Abstract(参考訳): 大規模高電圧電力グリッドの運用データにおける異常検出問題に対して,機械学習アルゴリズムを適用した。
アルゴリズムの性能における重要な違いを観察する。
ニューラルネットワークは、典型的にはk-アネレスト近傍やサポートベクターマシンといった古典的アルゴリズムよりも優れており、これは異常の強い文脈的性質によって説明される。
教師なし学習アルゴリズムは極めてうまく機能し、それらの予測は同時並行的な異常に対して頑健であることを示す。
関連論文リスト
- Counting and Algorithmic Generalization with Transformers [0.0]
標準トランスフォーマーは,分散性能を損なうようなアーキテクチャ上の決定に基づくものであることを示す。
改良された変換器は、カウントにおいて優れたアルゴリズム一般化性能を示すことができることを示す。
論文 参考訳(メタデータ) (2023-10-12T18:39:24Z) - Computing large deviation prefactors of stochastic dynamical systems
based on machine learning [4.474127100870242]
弱い雑音の極限における力学系の希少事象の指数推定を特徴付ける大きな偏差理論を提案する。
我々は、ベクトル場の分解に基づいて、準ポテンシャル、最も確率の高い経路とプレファクタを計算するためのニューラルネットワークフレームワークを設計する。
数値実験は、弱いランダム変動によって引き起こされる稀な事象の内部メカニズムを探索する上で、その強力な機能を示す。
論文 参考訳(メタデータ) (2023-06-20T09:59:45Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Sampling Strategies for Static Powergrid Models [0.0]
電力フロー計算は、電力グリッドのバスの電圧の大きさを電力値から計算する反復的な方法である。
機械学習、特に人工知能ニューラルネットワークは、電力フロー計算のサロゲートとしてうまく利用された。
論文 参考訳(メタデータ) (2022-04-19T11:38:07Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
我々は、古典的で有名なオンライングラフ探索問題の学習強化版について研究する。
本稿では,予測をよく知られたNearest Neighbor(NN)アルゴリズムに自然に統合するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-10T10:02:31Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。