論文の概要: The Observer Effect in World Models: Invasive Adaptation Corrupts Latent Physics
- arxiv url: http://arxiv.org/abs/2602.12218v1
- Date: Thu, 12 Feb 2026 17:56:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-13 21:07:25.967105
- Title: The Observer Effect in World Models: Invasive Adaptation Corrupts Latent Physics
- Title(参考訳): 世界モデルにおけるオブザーバ効果:侵略的適応崩壊と遅延物理学
- Authors: Christian Internò, Jumpei Yamaguchi, Loren Amdahl-Culleton, Markus Olhofer, David Klindt, Barbara Hammer,
- Abstract要約: 本研究では,非侵襲的評価プロトコルであるPhyIPを提案する。
流体力学と軌道力学にまたがって、SSLが低い誤差を達成すれば、潜伏構造が線形アクセス可能であることが分かる。
- 参考スコア(独自算出の注目度): 5.20694680088186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining whether neural models internalize physical laws as world models, rather than exploiting statistical shortcuts, remains challenging, especially under out-of-distribution (OOD) shifts. Standard evaluations often test latent capability via downstream adaptation (e.g., fine-tuning or high-capacity probes), but such interventions can change the representations being measured and thus confound what was learned during self-supervised learning (SSL). We propose a non-invasive evaluation protocol, PhyIP. We test whether physical quantities are linearly decodable from frozen representations, motivated by the linear representation hypothesis. Across fluid dynamics and orbital mechanics, we find that when SSL achieves low error, latent structure becomes linearly accessible. PhyIP recovers internal energy and Newtonian inverse-square scaling on OOD tests (e.g., $ρ> 0.90$). In contrast, adaptation-based evaluations can collapse this structure ($ρ\approx 0.05$). These findings suggest that adaptation-based evaluation can obscure latent structures and that low-capacity probes offer a more accurate evaluation of physical world models.
- Abstract(参考訳): ニューラルネットワークが物理法則を、統計的ショートカットではなく世界モデルとして内部化するかどうかを決定することは、特にアウト・オブ・ディストリビューション(OOD)シフトの下では、依然として難しい。
標準評価は、下流適応(例えば、微調整、高容量プローブ)を通じて潜伏能力をテストすることが多いが、そのような介入は測定対象の表現を変え、自己教師付き学習(SSL)中に学んだことを誤解させる可能性がある。
非侵襲的評価プロトコルであるPhyIPを提案する。
物理量と凍結表現は線形表現仮説によって動機付けられるか検証する。
流体力学と軌道力学にまたがって、SSLが低い誤差を達成すれば、潜伏構造が線形アクセス可能であることが分かる。
PhyIPは内部エネルギーとOOD試験(例えば、$ρ> 0.90$)におけるニュートン逆二乗スケーリングを回復する。
対照的に、適応に基づく評価は、この構造を崩壊させる(ρ\approx 0.05$)。
これらの結果は、適応に基づく評価が潜伏構造を曖昧にし、低容量プローブが物理世界モデルをより正確に評価できることを示唆している。
関連論文リスト
- From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures [12.68400434984463]
MLIPは量子ポテンシャルエネルギー表面の物理的滑らかさを再現することができない。
マイクロカノニカル分子動力学のような既存の評価は計算に高価であり、主に近平衡状態を研究する。
MLIPの評価基準を改善するためにBSCT(Band Smoothness Characterization Test)を導入する。
論文 参考訳(メタデータ) (2026-02-04T18:50:10Z) - From Physics to Machine Learning and Back: Part II - Learning and Observational Bias in PHM [52.64097278841485]
物理インフォームドモデリングとデータストラテジーによる学習と観察バイアスの導入は、モデルを物理的に一貫した信頼性のある予測へと導くことができるかを検討する。
メタラーニングや少数ショットラーニングなどの高速適応手法をドメイン一般化手法とともに検討する。
論文 参考訳(メタデータ) (2025-09-25T14:15:43Z) - Potential failures of physics-informed machine learning in traffic flow modeling: theoretical and experimental analysis [5.055539099879598]
本研究では,物理インフォームド・機械学習 (PIML) がマクロな交通流モデリングに失敗する原因について検討する。
障害を、PIMLモデルが純粋にデータ駆動と純粋に物理ベースラインの両方を所定の閾値で下回る場合として定義する。
LWRベースのPIMLが高解像度のデータでもARZベースのPIMLより優れている理由を説明する。
論文 参考訳(メタデータ) (2025-05-16T17:55:06Z) - Automated Model Discovery for Tensional Homeostasis: Constitutive Machine Learning in Growth and Remodeling [0.0]
キネマティック成長とホメオスタティック表面を組み込むことで,非弾性構成型ニューラルネットワーク(iCANN)を拡張した。
実験により得られた組織等価データから材料点レベルで学習するネットワークの能力を評価する。
論文 参考訳(メタデータ) (2024-10-17T15:12:55Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - Latent Traversals in Generative Models as Potential Flows [113.4232528843775]
我々は,学習された動的ポテンシャルランドスケープを持つ潜在構造をモデル化することを提案する。
物理、最適輸送、神経科学にインスパイアされたこれらの潜在的景観は、物理的に現実的な偏微分方程式として学習される。
本手法は,最先端のベースラインよりも定性的かつ定量的に歪んだ軌跡を実現する。
論文 参考訳(メタデータ) (2023-04-25T15:53:45Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Recoding latent sentence representations -- Dynamic gradient-based
activation modification in RNNs [0.0]
RNNでは、サブオプティマティックな方法で情報をエンコーディングすることは、シーケンスの後の要素に基づいて表現の質に影響を与える可能性がある。
勾配に基づく補正機構を用いて,標準RNNへの拡張を提案する。
言語モデリングの文脈で異なる実験を行い、そのようなメカニズムを使うことによる影響を詳細に調べる。
論文 参考訳(メタデータ) (2021-01-03T17:54:17Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。