論文の概要: Learning functional components of PDEs from data using neural networks
- arxiv url: http://arxiv.org/abs/2602.13174v1
- Date: Fri, 13 Feb 2026 18:32:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-16 23:37:54.079144
- Title: Learning functional components of PDEs from data using neural networks
- Title(参考訳): ニューラルネットワークを用いたデータからのPDEの機能的コンポーネントの学習
- Authors: Torkel E. Loman, Yurij Salmaniw, Antonio Leon Villares, Jose A. Carrillo, Ruth E. Baker,
- Abstract要約: 偏微分方程式は、しばしば直接測ることが困難または不可能な未知の関数を含む。
ニューラルネットワークをPDEに組み込んで、データに基づいてトレーニングすることで、未知の関数を任意の精度で近似する方法を示す。
利用可能な解の数,特性,サンプリング密度,測定ノイズなど,幅広い要因が機能回復にどう影響するかを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial differential equations often contain unknown functions that are difficult or impossible to measure directly, hampering our ability to derive predictions from the model. Workflows for recovering scalar PDE parameters from data are well studied: here we show how similar workflows can be used to recover functions from data. Specifically, we embed neural networks into the PDE and show how, as they are trained on data, they can approximate unknown functions with arbitrary accuracy. Using nonlocal aggregation-diffusion equations as a case study, we recover interaction kernels and external potentials from steady state data. Specifically, we investigate how a wide range of factors, such as the number of available solutions, their properties, sampling density, and measurement noise, affect our ability to successfully recover functions. Our approach is advantageous because it can utilise standard parameter-fitting workflows, and in that the trained PDE can be treated as a normal PDE for purposes such as generating system predictions.
- Abstract(参考訳): 偏微分方程式は、しばしば直接測ることが困難または不可能な未知の関数を含み、モデルから予測を引き出す能力を妨げている。
データからスカラーPDEパラメータを復元するためのワークフローは、よく研究されている。
具体的には、ニューラルネットワークをPDEに組み込み、それらがデータに基づいて訓練されている場合、未知の関数を任意の精度で近似する方法を示す。
非局所凝集拡散方程式をケーススタディとして、定常状態データから相互作用カーネルと外部ポテンシャルを復元する。
具体的には, 利用可能な解数, その特性, サンプリング密度, 測定ノイズなどの幅広い要因が, 機能回復にどう影響するかを検討する。
提案手法は,標準パラメータ適合ワークフローを活用でき,学習されたPDEをシステム予測生成などの目的のために通常のPDEとして扱うことができるため,利点がある。
関連論文リスト
- In-Context Learning of Stochastic Differential Equations with Foundation Inference Models [6.785438664749581]
微分方程式(SDE)は、ドリフト関数によって支配される決定論的流れが拡散関数によって予測されるランダムなゆらぎで重畳される力学系を記述する。
低次元SDEのドリフトと拡散関数の正確なテキスト内推定を行う事前学習型認識モデルであるFIM-SDE(Foundation Inference Model for SDEs)を導入する。
我々は、FIM-SDEが、多種多様な合成および実世界のプロセスにわたって頑健なコンテキスト内関数推定を実現することを実証した。
論文 参考訳(メタデータ) (2025-02-26T11:04:02Z) - DimINO: Dimension-Informed Neural Operator Learning [41.37905663176428]
Diminoは次元分析にインスパイアされたフレームワークである。
既存のニューラル演算子アーキテクチャにシームレスに統合することができる。
PDEデータセットで最大76.3%のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - DeltaPhi: Physical States Residual Learning for Neural Operators in Data-Limited PDE Solving [54.605760146540234]
DeltaPhiは、PDE解決タスクを、直接入力出力マッピングの学習から、類似の物理的状態間の残差学習に変換する、新しい学習フレームワークである。
大規模な実験は、様々な物理的システムにまたがって一貫した、重要な改善を示す。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Physics-constrained robust learning of open-form partial differential equations from limited and noisy data [1.50528618730365]
本研究では,自由形式偏微分方程式(PDE)を有限・雑音データから頑健に解明する枠組みを提案する。
ニューラルネットワークに基づく予測モデルは、システム応答に適合し、生成されたPDEに対する報酬評価器として機能する。
数値実験により, 非線形力学系から, 極めてノイズの多いデータで支配方程式を発見できることを示す。
論文 参考訳(メタデータ) (2023-09-14T12:34:42Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
この研究は、関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)と呼ばれる数学的に厳密なフレームワークを導入する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Bayesian Deep Learning for Partial Differential Equation Parameter
Discovery with Sparse and Noisy Data [0.0]
本研究では,ベイジアンニューラルネットワーク(BNN)を用いて,測定データからシステム全体の状態を復元する手法を提案する。
過度に適合することなく、様々な複雑さの物理学を正確に捉えることができることを示す。
我々は、物理学や非線形力学に適用されたいくつかの例について、我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-08-05T19:43:15Z) - Learning Functional Priors and Posteriors from Data and Physics [3.537267195871802]
我々は、歴史的データを用いて時空の露光を可能にするディープニューラルネットワークに基づく新しいフレームワークを開発した。
物理インフォームド・ジェネレーティブ・アダクティブ・アダクティブ・ネットワーク(PI-GAN)を用いて機能的事前学習を行う。
第2段階では, PI-GANの潜伏空間の後方を推定するために, ハミルトニアンモンテカルロ法(HMC)を用いる。
論文 参考訳(メタデータ) (2021-06-08T03:03:24Z) - APIK: Active Physics-Informed Kriging Model with Partial Differential
Equations [6.918364447822299]
本稿では,PDEポイントの集合を介してPDE情報を導入し,標準クリグ法と同様の後方予測を行うPDE Informed Kriging Model (PIK)を提案する。
学習性能をさらに向上させるために,PDEポイントをデザインし,PIKモデルと測定データに基づいたPDE情報を活用するアクティブPIKフレームワーク(APIK)を提案する。
論文 参考訳(メタデータ) (2020-12-22T02:31:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。