論文の概要: Inverses of Matern Covariances on Grids
- arxiv url: http://arxiv.org/abs/1912.11914v3
- Date: Mon, 1 Mar 2021 19:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-10 07:58:41.070958
- Title: Inverses of Matern Covariances on Grids
- Title(参考訳): 格子上の母子共分散の逆
- Authors: Joseph Guinness
- Abstract要約: 点の正則格子上の偏微分方程式に基づく人気近似の特性について検討する。
高い周波数で過大な電力を割り当てることができ、グリッド間隔がゼロになるにつれて、逆数に対するより正確な近似が得られないことが分かる。
本研究では,SPDE近似が空間範囲パラメータを過大評価する傾向にあることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We conduct a study of the aliased spectral densities of Mat\'ern covariance
functions on a regular grid of points, providing clarity on the properties of a
popular approximation based on stochastic partial differential equations; while
others have shown that it can approximate the covariance function well, we find
that it assigns too much power at high frequencies and does not provide
increasingly accurate approximations to the inverse as the grid spacing goes to
zero, except in the one-dimensional exponential covariance case. We provide
numerical results to support our theory, and in a simulation study, we
investigate the implications for parameter estimation, finding that the SPDE
approximation tends to overestimate spatial range parameters.
- Abstract(参考訳): We conduct a study of the aliased spectral densities of Mat\'ern covariance functions on a regular grid of points, providing clarity on the properties of a popular approximation based on stochastic partial differential equations; while others have shown that it can approximate the covariance function well, we find that it assigns too much power at high frequencies and does not provide increasingly accurate approximations to the inverse as the grid spacing goes to zero, except in the one-dimensional exponential covariance case.
本理論を裏付ける数値的な結果を示し,シミュレーション研究によりパラメータ推定の意義について検討し,spde近似が空間範囲パラメータを過大評価する傾向があることを発見した。
関連論文リスト
- Generalizing Stochastic Smoothing for Differentiation and Gradient Estimation [59.86921150579892]
アルゴリズム,演算子,シミュレータ,その他の微分不可能関数の微分可能緩和に対する勾配推定の問題に対処する。
我々は、微分可能なソートとランキングのための分散化戦略、グラフ上の微分可能なショートパス、ポーズ推定のための微分可能なレンダリング、および微分可能なCryo-ETシミュレーションを開発する。
論文 参考訳(メタデータ) (2024-10-10T17:10:00Z) - Posterior Covariance Structures in Gaussian Processes [2.1137702137979946]
帯域幅パラメータと観測の空間分布が後部共分散にどのように影響するかを示す。
絶対余剰共分散場を効率的に測定するいくつかの推定器を提案する。
我々は、理論的な発見とその実践的応用を説明するために、幅広い実験を行っている。
論文 参考訳(メタデータ) (2024-08-14T08:56:45Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Analytical Approximation of the ELBO Gradient in the Context of the Clutter Problem [0.0]
変分推論問題におけるエビデンス下界(ELBO)の勾配を近似する解析解を提案する。
提案手法は線形計算複雑性とともに精度と収束率を示す。
論文 参考訳(メタデータ) (2024-04-16T13:19:46Z) - On the Computation of the Gaussian Rate-Distortion-Perception Function [10.564071872770146]
平均二乗誤差(MSE)歪み下における多変量ガウス音源に対するレート歪み知覚関数(RDPF)の計算について検討した。
我々は、関連するアルゴリズムの実現、および収束と収束のキャラクタリゼーションの速度を提供する。
計算結果を数値シミュレーションで相関させ,既存の結果に関連付ける。
論文 参考訳(メタデータ) (2023-11-15T18:34:03Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - How Good are Low-Rank Approximations in Gaussian Process Regression? [28.392890577684657]
2つの共通低ランクカーネル近似による近似ガウス過程(GP)回帰の保証を提供する。
理論境界の有効性を評価するため,シミュレーションデータと標準ベンチマークの両方について実験を行った。
論文 参考訳(メタデータ) (2021-12-13T04:04:08Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - How Good are Low-Rank Approximations in Gaussian Process Regression? [24.09582049403961]
2つの共通低ランクカーネル近似による近似ガウス過程(GP)回帰の保証を提供する。
理論境界の有効性を評価するため,シミュレーションデータと標準ベンチマークの両方について実験を行った。
論文 参考訳(メタデータ) (2020-04-03T14:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。