論文の概要: Implicit regularization and momentum algorithms in nonlinear adaptive
control and prediction
- arxiv url: http://arxiv.org/abs/1912.13154v6
- Date: Thu, 17 Dec 2020 17:51:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-16 21:18:35.239482
- Title: Implicit regularization and momentum algorithms in nonlinear adaptive
control and prediction
- Title(参考訳): 非線形適応制御と予測における入射正則化と運動量アルゴリズム
- Authors: Nicholas M. Boffi, Jean-Jacques E. Slotine
- Abstract要約: 我々は,古典的適応非線形制御技術と最近の機械学習の進歩との間に強いつながりを生かしている。
適応的非線形制御と適応的ダイナミクス予測の両方において,アルゴリズム開発には未発達の可能性があることが示されている。
- 参考スコア(独自算出の注目度): 9.598662380364795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stable concurrent learning and control of dynamical systems is the subject of
adaptive control. Despite being an established field with many practical
applications and a rich theory, much of the development in adaptive control for
nonlinear systems revolves around a few key algorithms. By exploiting strong
connections between classical adaptive nonlinear control techniques and recent
progress in optimization and machine learning, we show that there exists
considerable untapped potential in algorithm development for both adaptive
nonlinear control and adaptive dynamics prediction. We first introduce
first-order adaptation laws inspired by natural gradient descent and mirror
descent. We prove that when there are multiple dynamics consistent with the
data, these non-Euclidean adaptation laws implicitly regularize the learned
model. Local geometry imposed during learning thus may be used to select
parameter vectors - out of the many that will achieve perfect tracking or
prediction - for desired properties such as sparsity. We apply this result to
regularized dynamics predictor and observer design, and as concrete examples
consider Hamiltonian systems, Lagrangian systems, and recurrent neural
networks. We subsequently develop a variational formalism based on the Bregman
Lagrangian to define adaptation laws with momentum applicable to linearly
parameterized systems and to nonlinearly parameterized systems satisfying
monotonicity or convexity requirements. We show that the Euler Lagrange
equations for the Bregman Lagrangian lead to natural gradient and mirror
descent-like adaptation laws with momentum, and we recover their first-order
analogues in the infinite friction limit. We illustrate our analyses with
simulations demonstrating our theoretical results.
- Abstract(参考訳): 動的システムの安定した同時学習と制御は適応制御の主題である。
多くの実用的応用と豊富な理論を持つ確立された分野であるにもかかわらず、非線形システムの適応制御の開発の多くは、いくつかの重要なアルゴリズムを中心に展開されている。
古典的適応非線形制御技術と最近の最適化と機械学習の進歩とを強く結び付けることで,適応非線形制御と適応動的予測の両面において,アルゴリズム開発に未発達の可能性が示された。
まず,自然勾配降下とミラー降下に触発された一階適応則を導入する。
データに一貫性のある複数のダイナミクスが存在する場合、これらの非ユークリッド適応法則は学習モデルを暗黙的に規則化する。
このように学習中に課される局所幾何は、スパーシティのような望ましい性質のために、完全な追跡や予測を達成する多くのパラメータベクトルを選択できる。
この結果を正規化力学予測器とオブザーバの設計に適用し、具体的にはハミルトン系、ラグランジュ系、および繰り返しニューラルネットワークを考える。
その後、ブレグマン・ラグランジアン(bregman lagrangian)に基づく変分形式を開発し、線形パラメータ化システムや単調性や凸性要件を満たす非線形パラメータ化システムに適用可能な運動量を持つ適応則を定義する。
ブレグマン・ラグランジュ方程式のオイラー・ラグランジュ方程式は運動量を持つ自然な勾配やミラー降下のような適応法則を導いており、無限摩擦極限においてそれらの一階の類似を回復する。
理論的結果を示すシミュレーションを用いて分析を行った。
関連論文リスト
- Receding Hamiltonian-Informed Optimal Neural Control and State Estimation for Closed-Loop Dynamical Systems [4.05766189327054]
Hamiltonian-Informed Optimal Neural (Hion) コントローラは、動的システムのためのニューラルネットワークベースの新しいクラスである。
ヒオンコントローラは将来の状態を推定し、ポントリャーギンの原理を用いて最適制御入力を計算する。
論文 参考訳(メタデータ) (2024-11-02T16:06:29Z) - Reinforced Model Predictive Control via Trust-Region Quasi-Newton Policy Optimization [0.0]
超線形収束率を用いた政策最適化のための準ニュートン学習アルゴリズムを提案する。
シミュレーション研究は、提案したトレーニングアルゴリズムがデータ効率と精度で他のアルゴリズムより優れていることを示している。
論文 参考訳(メタデータ) (2024-05-28T09:16:08Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Adaptive Robust Model Predictive Control via Uncertainty Cancellation [25.736296938185074]
本稿では,動的に重要な不確かさを補う学習に基づく頑健な予測制御アルゴリズムを提案する。
我々は、一定の等価な「推定とキャンセル」制御法に着想を得た、非線形フィードバックポリシーのクラスを最適化する。
論文 参考訳(メタデータ) (2022-12-02T18:54:23Z) - Learning-enhanced Nonlinear Model Predictive Control using
Knowledge-based Neural Ordinary Differential Equations and Deep Ensembles [5.650647159993238]
本研究では,知識に基づくニューラル常微分方程式(KNODE)とディープアンサンブルというディープラーニングツールを活用し,モデル予測制御(MPC)の予測精度を向上させる。
特に、KNODEモデルのアンサンブル(KNODEアンサンブル)を学習し、真のシステム力学の正確な予測を得る。
KNODEアンサンブルはより正確な予測を提供し、提案した非線形MPCフレームワークの有効性と閉ループ性能を示す。
論文 参考訳(メタデータ) (2022-11-24T23:51:18Z) - Neural ODEs as Feedback Policies for Nonlinear Optimal Control [1.8514606155611764]
ニューラルネットワークをパラメータ化した微分方程式として連続時間力学をモデル化するために、ニューラル常微分方程式(ニューラルODE)を用いる。
本稿では,一般非線形最適制御問題の解法としてニューラル・オードとして提案するニューラル・コントロール・ポリシーを提案する。
論文 参考訳(メタデータ) (2022-10-20T13:19:26Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Deformable Linear Object Prediction Using Locally Linear Latent Dynamics [51.740998379872195]
変形可能な物体(例えばロープ)の予測は、その非線形ダイナミクスと無限次元の構成空間のために困難である。
我々は、将来の潜在状態を予測するのに使用できる局所線形なアクション条件付きダイナミクスモデルを学ぶ。
我々は,本手法が将来10段階まで正確にロープ状態を予測できることを実証的に実証した。
論文 参考訳(メタデータ) (2021-03-26T00:29:31Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Logarithmic Regret Bound in Partially Observable Linear Dynamical
Systems [91.43582419264763]
部分的に観測可能な線形力学系におけるシステム同定と適応制御の問題について検討する。
開ループ系と閉ループ系の両方において有限時間保証付きの最初のモデル推定法を提案する。
AdaptOnは、未知の部分観測可能な線形力学系の適応制御において、$textpolylogleft(Tright)$ regretを達成する最初のアルゴリズムであることを示す。
論文 参考訳(メタデータ) (2020-03-25T06:00:33Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
我々は不確実性に直面した楽観主義の原理に基づく新しい強化学習アルゴリズムLqgOptを提案する。
LqgOptはシステムのダイナミクスを効率的に探索し、モデルのパラメータを信頼区間まで推定し、最も楽観的なモデルのコントローラをデプロイする。
論文 参考訳(メタデータ) (2020-03-12T19:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。