論文の概要: Adaptive sparse variational approximations for Gaussian process regression
- arxiv url: http://arxiv.org/abs/2504.03321v1
- Date: Fri, 04 Apr 2025 09:57:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-07 14:47:35.400339
- Title: Adaptive sparse variational approximations for Gaussian process regression
- Title(参考訳): ガウス過程回帰に対する適応スパース変分近似
- Authors: Dennis Nieman, Botond Szabó,
- Abstract要約: 階層型ベイズ法に対する変分近似を構築し, 変分後部の収縮率の上限を導出する。
我々の理論的結果は、合成データセットと実世界のデータセットの両方で数値解析される。
- 参考スコア(独自算出の注目度): 6.169364905804677
- License:
- Abstract: Accurate tuning of hyperparameters is crucial to ensure that models can generalise effectively across different settings. In this paper, we present theoretical guarantees for hyperparameter selection using variational Bayes in the nonparametric regression model. We construct a variational approximation to a hierarchical Bayes procedure, and derive upper bounds for the contraction rate of the variational posterior in an abstract setting. The theory is applied to various Gaussian process priors and variational classes, resulting in minimax optimal rates. Our theoretical results are accompanied with numerical analysis both on synthetic and real world data sets.
- Abstract(参考訳): ハイパーパラメータの正確なチューニングは、モデルが異なる設定で効果的に一般化できることを保証するために不可欠である。
本稿では,非パラメトリック回帰モデルにおける変分ベイズを用いたパラメータ選択の理論的保証について述べる。
階層ベイズ法に対する変分近似を構築し、抽象的な設定で変分後部の収縮率の上限を導出する。
この理論は様々なガウス過程の先行と変分類に適用され、結果として極小最適率が得られる。
我々の理論的結果は、合成データセットと実世界のデータセットの両方で数値解析される。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
本稿では,先行研究における重要な仮定を考察し,パラメータ化の新たな視点を提案する。
私たちの経験的調査には、3つの組み合わせでトレーニングされた数万のモデルが含まれています。
最高の学習率のスケーリング基準は、以前の作業の仮定から除外されることがよくあります。
論文 参考訳(メタデータ) (2024-07-08T12:32:51Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - Robust scalable initialization for Bayesian variational inference with
multi-modal Laplace approximations [0.0]
フル共分散構造を持つ変分混合は、パラメータ数による変動パラメータによる二次的な成長に苦しむ。
本稿では,変分推論のウォームスタートに使用できる初期ガウスモデル近似を構築する方法を提案する。
論文 参考訳(メタデータ) (2023-07-12T19:30:04Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Approximation Based Variance Reduction for Reparameterization Gradients [38.73307745906571]
柔軟な変分分布は変分推論を改善するが、最適化は困難である。
既知平均と共分散行列を持つ任意の可逆分布に適用可能な制御変数を提案する。
これは、非分解的変分分布の推論に対する勾配分散と最適化収束の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2020-07-29T06:55:11Z) - Maximum likelihood estimation and uncertainty quantification for
Gaussian process approximation of deterministic functions [10.319367855067476]
本稿は、ガウス過程の回帰の文脈において、ノイズのないデータセットを用いた最初の理論的分析の1つを提供する。
本稿では,スケールパラメータのみの最大推定がガウス過程モデルの不特定に対する顕著な適応をもたらすことを示す。
論文 参考訳(メタデータ) (2020-01-29T17:20:21Z) - Approximate Inference for Fully Bayesian Gaussian Process Regression [11.47317712333228]
ガウス過程モデルにおける学習は、平均と共分散関数のハイパーパラメータの適応を通じて起こる。
textitFully Bayesian Process Regression (GPR) と呼ぶGPの階層的仕様において、後方超過パラメータを推論する別の学習方法がある。
ベンチマークデータセットを用いてベイズGPRの予測性能を解析する。
論文 参考訳(メタデータ) (2019-12-31T17:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。