論文の概要: The use of Convolutional Neural Networks for signal-background
classification in Particle Physics experiments
- arxiv url: http://arxiv.org/abs/2002.05761v1
- Date: Thu, 13 Feb 2020 19:54:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 13:29:31.618857
- Title: The use of Convolutional Neural Networks for signal-background
classification in Particle Physics experiments
- Title(参考訳): 粒子物理学実験における畳み込みニューラルネットワークを用いた信号背景分類
- Authors: Venkitesh Ayyar, Wahid Bhimji, Lisa Gerhardt, Sally Robertson and
Zahra Ronaghi
- Abstract要約: 広範に畳み込み型ニューラルアーキテクチャ探索を行い,HEP分類のための信号/背景識別を高精度に行う。
パラメータが少ないCNNで複雑なResNetアーキテクチャと同じ精度を実現できることを示す。
- 参考スコア(独自算出の注目度): 0.4301924025274017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of Convolutional Neural Networks (CNNs) in image classification
has prompted efforts to study their use for classifying image data obtained in
Particle Physics experiments. Here, we discuss our efforts to apply CNNs to 2D
and 3D image data from particle physics experiments to classify signal from
background.
In this work we present an extensive convolutional neural architecture
search, achieving high accuracy for signal/background discrimination for a HEP
classification use-case based on simulated data from the Ice Cube neutrino
observatory and an ATLAS-like detector. We demonstrate among other things that
we can achieve the same accuracy as complex ResNet architectures with CNNs with
less parameters, and present comparisons of computational requirements,
training and inference times.
- Abstract(参考訳): 画像分類における畳み込みニューラルネットワーク(cnns)の成功は、粒子物理学実験で得られた画像データの分類に使用する方法の研究を促している。
本稿では,CNNを粒子物理実験から得られた2次元および3次元画像データに適用し,背景からの信号の分類を行う。
本研究では,アイスキューブニュートリノ天文台とATLAS型検出器のシミュレーションデータに基づいて,HEP分類用ユースケースの信号/背景識別を高精度に行う畳み込みニューラルネットワーク探索を提案する。
我々は、パラメータの少ないcnnを用いて、複雑なresnetアーキテクチャと同等の精度を達成できることを実証し、計算要求、トレーニング、推論時間の比較を示す。
関連論文リスト
- Forecasting Fold Bifurcations through Physics-Informed Convolutional
Neural Networks [0.0]
本研究では,2次分岐近傍の力学系の時系列を同定する物理インフォームド畳み込みニューラルネットワーク(CNN)を提案する。
CNNは比較的少量のデータと単一の非常に単純なシステムで訓練されている。
同様のタスクは、物理学に基づく情報を利用して得られる、かなりの外挿能力を必要とする。
論文 参考訳(メタデータ) (2023-12-21T10:07:52Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - On-Sensor Data Filtering using Neuromorphic Computing for High Energy
Physics Experiments [1.554920942634392]
本稿では, 粒子の逆運動量に基づいてセンサデータをフィルタリングする小型ニューロモルフィックモデルを提案する。
入ってくる電荷波形は二値イベントのストリームに変換され、SNNによって処理される。
論文 参考訳(メタデータ) (2023-07-20T21:25:25Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet Pre-trained Deep Neural Network (DNN)は、効果的な画像品質評価(IQA)モデルを構築するための顕著な転送性を示す。
我々は,事前学習DNN機能のみに基づく新しいフル参照IQA(FR-IQA)モデルを開発した。
5つの標準IQAデータセット上で,提案した品質モデルの優位性を示すため,包括的実験を行った。
論文 参考訳(メタデータ) (2022-11-09T14:57:27Z) - Physics-informed neural networks for gravity currents reconstruction
from limited data [0.0]
本研究では, 物理インフォームドニューラルネットワーク(PINN)を用いた非定常重力電流の3次元再構成について検討した。
PINNコンテキストでは、目的関数がネットワーク予測と観測データとのミスマッチをペナルティ化するニューラルネットワークをトレーニングすることにより、フローフィールドを再構築する。
論文 参考訳(メタデータ) (2022-11-03T11:27:29Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
本研究の目的は,AIGA-IACTに設定された課題を解決するための機械学習アプリケーションの可能性を検討することである。
The method of Convolutional Neural Networks (CNN) was applied to process and analysis Monte-Carlo eventssimulated with CORSIKA。
論文 参考訳(メタデータ) (2021-12-19T15:17:20Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
論文 参考訳(メタデータ) (2021-12-16T17:03:14Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Inferring Convolutional Neural Networks' accuracies from their
architectural characterizations [0.0]
CNNのアーキテクチャと性能の関係について検討する。
本稿では,2つのコンピュータビジョンに基づく物理問題において,その特性がネットワークの性能を予測できることを示す。
我々は機械学習モデルを用いて、トレーニング前にネットワークが一定のしきい値精度よりも優れた性能を発揮できるかどうかを予測する。
論文 参考訳(メタデータ) (2020-01-07T16:41:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。