論文の概要: Physics-informed neural networks for gravity currents reconstruction
from limited data
- arxiv url: http://arxiv.org/abs/2211.09715v2
- Date: Wed, 14 Jun 2023 07:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-17 03:17:00.883276
- Title: Physics-informed neural networks for gravity currents reconstruction
from limited data
- Title(参考訳): 有限データからの重力電流再構成のための物理インフォームドニューラルネットワーク
- Authors: Micka\"el Delcey, Yoann Cheny, S\'ebastien Kiesgen de Richter
- Abstract要約: 本研究では, 物理インフォームドニューラルネットワーク(PINN)を用いた非定常重力電流の3次元再構成について検討した。
PINNコンテキストでは、目的関数がネットワーク予測と観測データとのミスマッチをペナルティ化するニューラルネットワークをトレーニングすることにより、フローフィールドを再構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The present work investigates the use of physics-informed neural networks
(PINNs) for the 3D reconstruction of unsteady gravity currents from limited
data. In the PINN context, the flow fields are reconstructed by training a
neural network whose objective function penalizes the mismatch between the
network predictions and the observed data and embeds the underlying equations
using automatic differentiation. This study relies on a high-fidelity numerical
experiment of the canonical lock-exchange configuration. This allows us to
benchmark quantitatively the PINNs reconstruction capabilities on several
training databases that mimic state-of-the-art experimental measurement
techniques for density and velocity. Notably, spatially averaged density
measurements by light attenuation technique (LAT) are employed for the training
procedure. An optimal experimental setup for flow reconstruction by PINNs is
proposed according to two criteria : the implementation complexity and the
accuracy of the inferred fields.
- Abstract(参考訳): 本研究では, 物理インフォームドニューラルネットワーク(PINN)を用いた非定常重力電流の3次元再構成について検討した。
PINNの文脈では、目的関数がネットワーク予測と観測データとのミスマッチをペナルティ化し、自動微分を用いて基礎となる方程式を埋め込むニューラルネットワークを訓練することにより、流れ場を再構築する。
本研究は、正準ロック交換構成の高忠実度数値実験に依存する。
これにより、密度と速度に関する最先端の実験的な測定技術を模倣した、いくつかのトレーニングデータベース上で、PINNの再構築能力を定量的にベンチマークすることができる。
特に、光減衰法(lat)による空間平均密度測定がトレーニング手順に採用されている。
pinnによるフロー再構成のための最適実験セットアップは,実装の複雑さと推定フィールドの精度という2つの基準に従って提案されている。
関連論文リスト
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
本研究では,グラフニューラルネットワーク(GNN)とReynolds-Averaged Navier Stokes(RANS)方程式を組み合わせた新しいハイブリッド手法を提案する。
その結果, 純粋なデータ駆動モデルと比較して, 再構成平均流の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
本研究では,高次元偏微分方程式を数値的に解くために,能動的学習を用いた学習データを生成するディープラーニングに基づくニューラル・ガレルキンスキームを提案する。
ニューラル・ガレルキンスキームはディラック・フランケル変分法に基づいて、残余を時間とともに最小化することで、ネットワークを訓練する。
提案したニューラル・ガレルキン・スキームの学習データ収集は,高次元におけるネットワークの表現力を数値的に実現するための鍵となる。
論文 参考訳(メタデータ) (2022-03-02T19:09:52Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - LocalDrop: A Hybrid Regularization for Deep Neural Networks [98.30782118441158]
本稿では,ローカルラデマチャー複雑性を用いたニューラルネットワークの正規化のための新しい手法であるLocalDropを提案する。
フルコネクテッドネットワーク(FCN)と畳み込みニューラルネットワーク(CNN)の両方のための新しい正規化機能は、ローカルラデマチャー複雑さの上限提案に基づいて開発されました。
論文 参考訳(メタデータ) (2021-03-01T03:10:11Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。