論文の概要: Physics-informed deep learning for incompressible laminar flows
- arxiv url: http://arxiv.org/abs/2002.10558v2
- Date: Wed, 22 Apr 2020 00:38:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 04:46:37.116374
- Title: Physics-informed deep learning for incompressible laminar flows
- Title(参考訳): 非圧縮性層流に対する物理インフォームド深層学習
- Authors: Chengping Rao, Hao Sun and Yang Liu
- Abstract要約: 流体力学のための物理インフォームドニューラルネットワーク(PINN)の混合可変方式を提案する。
パラメトリック研究では、混合変数スキームがPINNのトレーニング容易性と解の精度を向上させることが示されている。
- 参考スコア(独自算出の注目度): 13.084113582897965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed deep learning has drawn tremendous interest in recent years
to solve computational physics problems, whose basic concept is to embed
physical laws to constrain/inform neural networks, with the need of less data
for training a reliable model. This can be achieved by incorporating the
residual of physics equations into the loss function. Through minimizing the
loss function, the network could approximate the solution. In this paper, we
propose a mixed-variable scheme of physics-informed neural network (PINN) for
fluid dynamics and apply it to simulate steady and transient laminar flows at
low Reynolds numbers. A parametric study indicates that the mixed-variable
scheme can improve the PINN trainability and the solution accuracy. The
predicted velocity and pressure fields by the proposed PINN approach are also
compared with the reference numerical solutions. Simulation results demonstrate
great potential of the proposed PINN for fluid flow simulation with a high
accuracy.
- Abstract(参考訳): 物理インフォームド・ディープ・ラーニングは近年、計算物理学の問題を解決するために大きな関心を集めている。その基本的な概念は、信頼性のあるモデルをトレーニングするためのデータが少なくて済むように、ニューラルネットワークに物理法則を組み込むことである。
これは、物理方程式の残差を損失関数に組み込むことによって達成できる。
損失関数を最小化することで、ネットワークは解を近似することができる。
本稿では,流体力学のための物理インフォームドニューラルネットワーク(PINN)の混合変数スキームを提案し,それを用いてレイノルズ数が少なくて定常かつ過渡的な層流をシミュレートする。
パラメトリックな研究によれば、混合変数スキームはピントレーサビリティと解の精度を向上させることができる。
また,提案手法による予測速度と圧力場を基準数値解と比較した。
シミュレーションの結果,高精度な流体流動シミュレーションのためのPINNの可能性が示唆された。
関連論文リスト
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
金属添加物製造(AM)における溶融プールダイナミクスは, 印刷材料の安定性, 微細構造形成, 最終特性の処理に重要である。
本稿では,ニューラルネットワークと制御物理法則を統合した物理インフォームド機械学習(PIML)による溶融プール力学の予測を行う。
データ効率のよいPINNモデルは、制御偏微分方程式(PDE)、初期条件、PINNモデルの境界条件を組み込むことによって、ソフトペナルティに起因している。
論文 参考訳(メタデータ) (2023-07-23T12:12:44Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Forecasting subcritical cylinder wakes with Fourier Neural Operators [58.68996255635669]
実験によって測定された速度場の時間的変化を予測するために,最先端の演算子学習手法を適用した。
その結果、FNOはレイノルズ数の範囲で実験速度場の進化を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2023-01-19T20:04:36Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Transfer learning based multi-fidelity physics informed deep neural
network [0.0]
支配微分方程式は、近似的な意味では知られていないか、知られているかのどちらかである。
本稿では,深部ニューラルネットワーク(MF-PIDNN)を用いた多要素物理について述べる。
MF-PIDNNは、転送学習の概念を用いて、物理情報とデータ駆動型ディープラーニング技術をブレンドする。
論文 参考訳(メタデータ) (2020-05-19T13:57:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。