論文の概要: Optimally adaptive Bayesian spectral density estimation for stationary
and nonstationary processes
- arxiv url: http://arxiv.org/abs/2003.02367v3
- Date: Tue, 31 May 2022 12:04:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 13:45:01.308657
- Title: Optimally adaptive Bayesian spectral density estimation for stationary
and nonstationary processes
- Title(参考訳): 定常および非定常過程に対する最適適応ベイズスペクトル密度推定
- Authors: Nick James and Max Menzies
- Abstract要約: 本稿では、ガウス過程を仮定した定常時系列および非定常時系列のスペクトル密度を推定する既存の方法を改善する。
適切な固有分解を最適化することにより、簡単な周期構造と複雑な周期構造の両方でデータをより適切にモデル化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article improves on existing methods to estimate the spectral density of
stationary and nonstationary time series assuming a Gaussian process prior. By
optimising an appropriate eigendecomposition using a smoothing spline
covariance structure, our method more appropriately models data with both
simple and complex periodic structure. We further justify the utility of this
optimal eigendecomposition by investigating the performance of alternative
covariance functions other than smoothing splines. We show that the optimal
eigendecomposition provides a material improvement, while the other covariance
functions under examination do not, all performing comparatively well as the
smoothing spline. During our computational investigation, we introduce new
validation metrics for the spectral density estimate, inspired from the
physical sciences. We validate our models in an extensive simulation study and
demonstrate superior performance with real data.
- Abstract(参考訳): 本稿では、ガウス過程を仮定した定常時系列および非定常時系列のスペクトル密度を推定する既存の方法を改善する。
平滑なスプライン共分散構造を用いて適切な固有分解を最適化することにより、本手法は単純かつ複雑な周期構造を持つデータをより適切にモデル化する。
スプラインの平滑化以外の共分散関数の性能を調べることにより, この最適固有分解の有用性をさらに正当化する。
その結果, 最適固有分解は物質的改善をもたらすが, 試験中の他の共分散関数は改善せず, 平滑化スプラインと同等の性能を発揮することがわかった。
本研究では,物理科学に触発されたスペクトル密度推定のための新しい検証指標を提案する。
シミュレーション実験において,本モデルの有効性を検証し,実データによる優れた性能を示す。
関連論文リスト
- Joint State Estimation and Noise Identification Based on Variational
Optimization [8.536356569523127]
CVIAKFと呼ばれる共役計算変分推論に基づく新しい適応カルマンフィルタ法を提案する。
CVIAKFの有効性は、目標追尾のための合成および実世界のデータセットを通して検証される。
論文 参考訳(メタデータ) (2023-12-15T07:47:03Z) - Spectral Estimators for Structured Generalized Linear Models via Approximate Message Passing [28.91482208876914]
本研究では,高次元一般化線形モデルにおけるパラメータ推定の問題について考察する。
広く使われているにもかかわらず、厳密なパフォーマンス特性とデータ前処理の原則が、構造化されていない設計でのみ利用可能である。
論文 参考訳(メタデータ) (2023-08-28T11:49:23Z) - Sampling from Gaussian Process Posteriors using Stochastic Gradient
Descent [43.097493761380186]
勾配アルゴリズムは線形系を解くのに有効な方法である。
最適値に収束しない場合であっても,勾配降下は正確な予測を導出することを示す。
実験的に、勾配降下は十分に大規模または不条件の回帰タスクにおいて最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-06-20T15:07:37Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Efficient Semi-Implicit Variational Inference [65.07058307271329]
効率的でスケーラブルな半単純外挿 (SIVI) を提案する。
本手法はSIVIの証拠を低勾配値の厳密な推測にマッピングする。
論文 参考訳(メタデータ) (2021-01-15T11:39:09Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
本稿では,偏微分方程式などの数学モデルによるベイズ逆問題に対する最適実験設計 (OED) のための二項最適化への新しいアプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性勾配はベルヌーイ分布に対する期待の形で目的関数にキャストされる。
この目的を確率的最適化ルーチンを用いて最適な観測方針を求めることで解決する。
論文 参考訳(メタデータ) (2021-01-15T03:54:12Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。