論文の概要: Merge-split Markov chain Monte Carlo for community detection
- arxiv url: http://arxiv.org/abs/2003.07070v4
- Date: Mon, 13 Jul 2020 16:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-23 03:14:02.596694
- Title: Merge-split Markov chain Monte Carlo for community detection
- Title(参考訳): マージ分離型マルコフ連鎖モンテカルロによる地域発見
- Authors: Tiago P. Peixoto
- Abstract要約: ネットワーク分割の後方分布から効率的にサンプリングできる群をマージおよび分割したマルコフ連鎖モンテカルロスキームを提案する。
グループ間の単一ノードの移動に基づくスキームは,小ネットワーク上でも後方分布から正しくサンプリングできないことを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a Markov chain Monte Carlo scheme based on merges and splits of
groups that is capable of efficiently sampling from the posterior distribution
of network partitions, defined according to the stochastic block model (SBM).
We demonstrate how schemes based on the move of single nodes between groups
systematically fail at correctly sampling from the posterior distribution even
on small networks, and how our merge-split approach behaves significantly
better, and improves the mixing time of the Markov chain by several orders of
magnitude in typical cases. We also show how the scheme can be
straightforwardly extended to nested versions of the SBM, yielding
asymptotically exact samples of hierarchical network partitions.
- Abstract(参考訳): 本稿では,確率ブロックモデル (sbm) に基づいて定義されるネットワーク分割の後方分布から効率的にサンプリングできる群のマージと分割に基づくマルコフ連鎖モンテカルロスキームを提案する。
グループ間の単一ノードの移動に基づくスキームが,小ネットワーク上でも後方分布から正しくサンプリングできないこと,マージ・スプリットアプローチの挙動が著しく良好であること,典型的な場合においてマルコフ連鎖の混合時間を数桁改善できることを実証した。
また,SBMのネストバージョンに容易に拡張可能であり,階層的ネットワーク分割の漸近的に正確なサンプルが得られることを示す。
関連論文リスト
- Symmetry-driven embedding of networks in hyperbolic space [0.4779196219827508]
双曲モデルでは、経験的ネットワークの重み付き次数分布、高いクラスタリング、階層構造を再現することができる。
しかし、ネットワークの双曲座標を見つけるための現在のアルゴリズムは、推論された座標の不確かさを定量化しない。
BIGUEはマルコフ連鎖モンテカルロアルゴリズムであり、ベイズ的双曲乱数グラフモデルの後部分布をサンプリングする。
論文 参考訳(メタデータ) (2024-06-15T18:44:02Z) - Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps [28.229819253644862]
本稿では,マルコフ連鎖の遷移核のパラメータ化と訓練を行い,効率的なサンプリングと良好な混合を実現する方法を提案する。
この訓練方法は、チェーンの定常分布とデータの経験分布との総変動距離を最小化する。
論文 参考訳(メタデータ) (2024-06-04T17:00:14Z) - Parallel Affine Transformation Tuning of Markov Chain Monte Carlo [1.0923877073891446]
特に,サンプリング中のアフィン変換を適応的に学習するフレキシブルでユーザフレンドリなスキームを提案する。
提案手法とギブシアン極スライスサンプリングの組み合わせにより,比較的低い計算コストで高品質な試料が得られた。
論文 参考訳(メタデータ) (2024-01-29T21:06:25Z) - Generative Flow Networks: a Markov Chain Perspective [93.9910025411313]
我々はマルコフ連鎖を用いたGFlowNetsの新しい視点を提案し、状態空間の性質に関わらずGFlowNetsの統一的な視点を示す。
GFlowNetsをMCMCメソッドと同じ理論的フレームワークに配置することで、両方のフレームワーク間の類似性も特定できます。
論文 参考訳(メタデータ) (2023-07-04T01:28:02Z) - Joint Bayesian Inference of Graphical Structure and Parameters with a
Single Generative Flow Network [59.79008107609297]
本稿では,ベイジアンネットワークの構造上の結合後部を近似する手法を提案する。
サンプリングポリシが2フェーズプロセスに従う単一のGFlowNetを使用します。
パラメータは後部分布に含まれるため、これは局所確率モデルに対してより柔軟である。
論文 参考訳(メタデータ) (2023-05-30T19:16:44Z) - Unsupervised Deep Probabilistic Approach for Partial Point Cloud
Registration [74.53755415380171]
ディープポイントクラウド登録手法は、部分的に重複し、ラベル付きデータに依存するという課題に直面している。
部分的な重なりを持つ点雲に対する教師なしの深い確率的登録フレームワークであるUDPRegを提案する。
UDPRegは3DMatch/3DLoMatchとModelNet/ModelLoNetベンチマークの競合性能を実現しています。
論文 参考訳(メタデータ) (2023-03-23T14:18:06Z) - Finite Sample Complexity of Sequential Monte Carlo Estimators on
Multimodal Target Distributions [0.0]
我々は、関連するカーネルの局所混合時間のみを必要とするシーケンシャルモンテカルロ(SMC)アルゴリズムに対する有限サンプル複素数を証明する。
対象の分布がマルチモーダルであり、カーネルのグローバルな混合が遅い場合、我々の境界は特に有用である。
論文 参考訳(メタデータ) (2022-08-13T15:06:03Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Curved Markov Chain Monte Carlo for Network Learning [0.0]
グラフ上に定義された離散曲率測度に基づくネットワークに対する幾何学的に拡張されたマルコフ連鎖モンテカルロサンプリングを提案する。
実世界のデータから導かれる決定論的ネットワーク上で, 広い範囲のネットワーク統計に, より高速に収束することを示す。
論文 参考訳(メタデータ) (2021-10-07T12:59:02Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。