An Overview and Case Study of the Clinical AI Model Development Life
Cycle for Healthcare Systems
- URL: http://arxiv.org/abs/2003.07678v3
- Date: Thu, 26 Mar 2020 21:03:35 GMT
- Title: An Overview and Case Study of the Clinical AI Model Development Life
Cycle for Healthcare Systems
- Authors: Charles Lu, Julia Strout, Romane Gauriau, Brad Wright, Fabiola Bezerra
De Carvalho Marcruz, Varun Buch, Katherine Andriole
- Abstract summary: We present a broadly accessible overview of the development life cycle of clinical AI models.
We then give an in-depth case study of the development process of a deep learning based system to detect aortic aneurysms.
- Score: 0.1995841328036364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Healthcare is one of the most promising areas for machine learning models to
make a positive impact. However, successful adoption of AI-based systems in
healthcare depends on engaging and educating stakeholders from diverse
backgrounds about the development process of AI models. We present a broadly
accessible overview of the development life cycle of clinical AI models that is
general enough to be adapted to most machine learning projects, and then give
an in-depth case study of the development process of a deep learning based
system to detect aortic aneurysms in Computed Tomography (CT) exams. We hope
other healthcare institutions and clinical practitioners find the insights we
share about the development process useful in informing their own model
development efforts and to increase the likelihood of successful deployment and
integration of AI in healthcare.
Related papers
- Medical Reasoning in the Era of LLMs: A Systematic Review of Enhancement Techniques and Applications [59.721265428780946]
Large Language Models (LLMs) in medicine have enabled impressive capabilities, yet a critical gap remains in their ability to perform systematic, transparent, and verifiable reasoning.<n>This paper provides the first systematic review of this emerging field.<n>We propose a taxonomy of reasoning enhancement techniques, categorized into training-time strategies and test-time mechanisms.
arXiv Detail & Related papers (2025-08-01T14:41:31Z) - Toward a Human-Centered AI-assisted Colonoscopy System in Australia [12.548421709213379]
Current development prioritizes machine learning model performance, overlooking essential aspects of user interface design, workflow integration, and overall user experience.
To realize AI's full potential, the HCI community must champion user-centered design, ensuring these systems are usable, support endoscopist expertise, and enhance patient outcomes.
arXiv Detail & Related papers (2025-03-15T23:36:48Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Merging Clinical Knowledge into Large Language Models for Medical Research and Applications: A Survey [9.359273536688066]
Medical artificial intelligence (medical AI) aims to apply academic medical AI systems to real-world medical scenarios.
This survey focuses on the building paradigms of medical AI systems including the use of clinical databases, datasets, training pipelines, integrating medical knowledge graphs, system applications, and evaluation systems.
arXiv Detail & Related papers (2025-02-28T12:00:51Z) - From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine [40.23383597339471]
multimodal AI is capable of integrating diverse data modalities, including imaging, text, and structured data, within a single model.
This scoping review explores the evolution of multimodal AI, highlighting its methods, applications, datasets, and evaluation in clinical settings.
Our findings underscore a shift from unimodal to multimodal approaches, driving innovations in diagnostic support, medical report generation, drug discovery, and conversational AI.
arXiv Detail & Related papers (2025-02-13T11:57:51Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Zero Shot Health Trajectory Prediction Using Transformer [11.660997334071952]
Enhanced Transformer for Health Outcome Simulation (ETHOS) is a novel application of the transformer deep-learning architecture for analyzing health data.
ETHOS is trained using Patient Health Timelines (PHTs)-detailed, tokenized records of health events-to predict future health trajectories.
arXiv Detail & Related papers (2024-07-30T18:33:05Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Automated Generation of High-Quality Medical Simulation Scenarios Through Integration of Semi-Structured Data and Large Language Models [0.0]
This study introduces a transformative framework for medical education by integrating semi-structured data with Large Language Models (LLMs)
The proposed approach utilizes AI to efficiently generate detailed, clinically relevant scenarios that are tailored to specific educational objectives.
arXiv Detail & Related papers (2024-04-30T17:06:11Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - A Review on Knowledge Graphs for Healthcare: Resources, Applications, and Promises [59.4999994297993]
This comprehensive review aims to provide an overview of the current state of Healthcare Knowledge Graphs (HKGs)
We thoroughly analyzed existing literature on HKGs, covering their construction methodologies, utilization techniques, and applications.
The review highlights the potential of HKGs to significantly impact biomedical research and clinical practice.
arXiv Detail & Related papers (2023-06-07T21:51:56Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Current State of Community-Driven Radiological AI Deployment in Medical
Imaging [1.474525456020066]
This report represents several years of weekly discussions and hands-on problem solving experience by groups of industry experts and clinicians in the MONAI Consortium.
We identify barriers between AI-model development in research labs and subsequent clinical deployment.
We discuss various AI integration points in a clinical Radiology workflow.
arXiv Detail & Related papers (2022-12-29T05:17:59Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Medical Imaging and Machine Learning [16.240472115235253]
The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging.
Data availability, need for novel computing architectures and explainable AI algorithms, are still relevant.
In this paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations.
arXiv Detail & Related papers (2021-03-02T18:53:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.