Thermodynamic uncertainty relation for general open quantum systems
- URL: http://arxiv.org/abs/2003.08557v4
- Date: Thu, 3 Dec 2020 15:43:50 GMT
- Title: Thermodynamic uncertainty relation for general open quantum systems
- Authors: Yoshihiko Hasegawa
- Abstract summary: We derive a thermodynamic uncertainty relation for general open quantum dynamics.
We apply our relation to continuous measurement and the quantum walk to find that the quantum nature of the system can enhance the precision.
- Score: 4.111899441919164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive a thermodynamic uncertainty relation for general open quantum
dynamics, described by a joint unitary evolution on a composite system
comprising a system and an environment. By measuring the environmental state
after the system-environment interaction, we bound the counting observables in
the environment by the survival activity, which reduces to the dynamical
activity in classical Markov processes. Remarkably, the relation derived herein
holds for general open quantum systems with any counting observable and any
initial state. Therefore, our relation is satisfied for classical Markov
processes with arbitrary time-dependent transition rates and initial states. We
apply our relation to continuous measurement and the quantum walk to find that
the quantum nature of the system can enhance the precision. Moreover, we can
make the lower bound arbitrarily small by employing appropriate continuous
measurement.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Quantum systems in Markovian environments [0.0]
We develop a framework to model a quantum system whose Hamiltonian may depend on the state of changing environment.
We show how to average over the environment to predict the expected values of observables.
arXiv Detail & Related papers (2023-08-15T19:00:25Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Emergent quantum correlations and collective behavior in non-interacting
quantum systems subject to stochastic resetting [0.0]
We investigate the dynamics of a non-interacting spin system undergoing coherent oscillations in the presence of Rabi resetting.
We show that resetting generally induces long-range quantum and classical correlations.
In the thermodynamic limit, the spin system can feature collective behavior.
arXiv Detail & Related papers (2022-02-25T12:22:19Z) - Quantum thermodynamics under continuous monitoring: a general framework [0.0]
We provide an introduction to the general theoretical framework to establish and interpret thermodynamics for quantum systems.
Main quantities such as work, heat, and entropy production can be defined at the level of thermodynamics.
The connection to irreversibility and fluctuation theorems is also discussed, together with some recent developments.
arXiv Detail & Related papers (2021-12-03T17:02:53Z) - Thermodynamics of Precision in Markovian Open Quantum Dynamics [0.0]
thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities.
We derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states.
We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels.
arXiv Detail & Related papers (2021-11-08T16:12:03Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - Initial-State Dependence of Thermodynamic Dissipation for any Quantum
Process [0.0]
We show new exact results about the nonequilibrium thermodynamics of open quantum systems at arbitrary timescales.
For any finite-time process with a fixed initial environment, we show that the contraction of the system's distinction exactly quantifies its thermodynamic dissipation.
arXiv Detail & Related papers (2020-02-26T12:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.