論文の概要: Cramer-Rao Bounds for Laplacian Matrix Estimation
- arxiv url: http://arxiv.org/abs/2504.04576v1
- Date: Sun, 06 Apr 2025 18:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-08 14:13:38.369229
- Title: Cramer-Rao Bounds for Laplacian Matrix Estimation
- Title(参考訳): ラプラシア行列推定のためのクレーマー・ラオ境界
- Authors: Morad Halihal, Tirza Routtenberg, H. Vincent Poor,
- Abstract要約: クラマー・ラオ境界(CRB)の閉形式行列式をラプラシア行列推定に特化して導出した。
電力系統における(i)トポロジー同定,(ii)拡散モデルにおけるグラフフィルタ同定,(iii)ラプラシアン制約下でのガウスマルコフ確率場における精度行列推定の3つの代表的応用について示す。
- 参考スコア(独自算出の注目度): 56.1214184671173
- License:
- Abstract: In this paper, we analyze the performance of the estimation of Laplacian matrices under general observation models. Laplacian matrix estimation involves structural constraints, including symmetry and null-space properties, along with matrix sparsity. By exploiting a linear reparametrization that enforces the structural constraints, we derive closed-form matrix expressions for the Cramer-Rao Bound (CRB) specifically tailored to Laplacian matrix estimation. We further extend the derivation to the sparsity-constrained case, introducing two oracle CRBs that incorporate prior information of the support set, i.e. the locations of the nonzero entries in the Laplacian matrix. We examine the properties and order relations between the bounds, and provide the associated Slepian-Bangs formula for the Gaussian case. We demonstrate the use of the new CRBs in three representative applications: (i) topology identification in power systems, (ii) graph filter identification in diffused models, and (iii) precision matrix estimation in Gaussian Markov random fields under Laplacian constraints. The CRBs are evaluated and compared with the mean-squared-errors (MSEs) of the constrained maximum likelihood estimator (CMLE), which integrates both equality and inequality constraints along with sparsity constraints, and of the oracle CMLE, which knows the locations of the nonzero entries of the Laplacian matrix. We perform this analysis for the applications of power system topology identification and graphical LASSO, and demonstrate that the MSEs of the estimators converge to the CRB and oracle CRB, given a sufficient number of measurements.
- Abstract(参考訳): 本稿では,一般観測モデルによるラプラシア行列の推定性能について解析する。
ラプラシア行列推定は、対称性やヌル空間の性質を含む構造的制約と行列の空間性を含む。
構造的制約を強制する線形再パラメータ化を利用することで、ラプラシア行列推定に特化されたクラマー・ラオ境界(CRB)の閉形式行列式を導出する。
さらに、ラプラシア行列における非零成分の位置という、サポートセットの事前情報を含む2つのオラクル CRB を導入することにより、空間的制約のあるケースへの導出をさらに拡張する。
境界間の性質と順序関係について検討し、ガウスの場合に対して関連するスレピアン・バングスの公式を提供する。
我々は3つの代表的アプリケーションで新しいCRBの使用を実演する。
一 電力系統におけるトポロジーの識別
(ii)拡散モデルにおけるグラフフィルタの識別
3)ラプラシアン制約下でのガウスマルコフ確率場における精度行列推定
CRBを評価・比較し、ラプラシア行列のゼロでないエントリの位置を知るオラクルCMLEの等式制約と不等式制約の両方を統合する制約付き最大極大推定器(CMLE)の平均二乗誤差(MSEs)と比較する。
本研究では,電力系統のトポロジ同定とグラフィカルLASSOの適用について解析を行い,推定器のMSEがCRBおよびオラクルCRBに収束し,十分な数の測定値が得られることを示した。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
行列データに対して行次元と列次元の両方に隠れたバリエーションを抽出するために,モードワイド・プリンシパル・サブスペース・スーツ (MOP-UP) と呼ばれる新しいフレームワークを導入する。
提案フレームワークの有効性と実用性は、シミュレーションと実データの両方の実験を通して実証される。
論文 参考訳(メタデータ) (2023-07-02T13:59:47Z) - Adaptive Estimation of Graphical Models under Total Positivity [13.47131471222723]
ガウス図形モデルにおける(対角的に支配的な)M-行列を精度行列として推定する問題を考える。
そこで本研究では,提案手法を改良した適応型多段階推定手法を提案する。
正規化問題を解くために,勾配予測法に基づく統一的なフレームワークを開発する。
論文 参考訳(メタデータ) (2022-10-27T14:21:27Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
本研究では,高次元行列データに対する分布自由正規化共分散推定法を提案する。
我々は、バンド可能な共分散を推定するための統一的な枠組みを定式化し、ランク1の制約のないクロネッカー積近似に基づく効率的なアルゴリズムを導入する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を実証した。
論文 参考訳(メタデータ) (2020-04-11T02:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。