論文の概要: Revisiting Unsupervised Relation Extraction
- arxiv url: http://arxiv.org/abs/2005.00087v1
- Date: Thu, 30 Apr 2020 20:22:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 04:50:09.016519
- Title: Revisiting Unsupervised Relation Extraction
- Title(参考訳): 教師なし関係抽出の再検討
- Authors: Thy Thy Tran, Phong Le, Sophia Ananiadou
- Abstract要約: 非ラベル関係抽出(URE)は、手作業による教師付きデータと既存の知識ベース(KB)を使わずに、原文から名前付きエンティティ間の関係を抽出する
我々は、名前付きエンティティのみを使用して関係型を誘導することにより、2つの一般的なデータセット上で既存のメソッドより優れていることを示す。
- 参考スコア(独自算出の注目度): 23.47182453117887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised relation extraction (URE) extracts relations between named
entities from raw text without manually-labelled data and existing knowledge
bases (KBs). URE methods can be categorised into generative and discriminative
approaches, which rely either on hand-crafted features or surface form.
However, we demonstrate that by using only named entities to induce relation
types, we can outperform existing methods on two popular datasets. We conduct a
comparison and evaluation of our findings with other URE techniques, to
ascertain the important features in URE. We conclude that entity types provide
a strong inductive bias for URE.
- Abstract(参考訳): 教師なし関係抽出(URE)は、手動でラベル付けされたデータと既存の知識ベース(KB)なしで、名前付きエンティティ間の関係を抽出する。
ure法は、手作りの特徴または表面形態に依存する生成的および識別的アプローチに分類することができる。
しかし、名前付きエンティティのみを使用してリレーションタイプを誘導することで、2つの人気のあるデータセット上の既存のメソッドを上回ることができることを実証する。
以上の結果と他のURE技術との比較と評価を行い,UREの重要な特徴を確認した。
我々は、エンティティタイプがUREに強い帰納バイアスをもたらすと結論付けている。
関連論文リスト
- TRIAD: Automated Traceability Recovery based on Biterm-enhanced
Deduction of Transitive Links among Artifacts [53.92293118080274]
トレーサビリティにより、ステークホルダは、ソフトウェアライフサイクル全体で導入されたソフトウェアアーティファクト間のトレースリンクを抽出し、理解することができます。
ほとんどの場合、Information Retrieval (IR) など、ソフトウェアアーティファクト間のテキストの類似性に依存している。
論文 参考訳(メタデータ) (2023-12-28T06:44:24Z) - Siamese Representation Learning for Unsupervised Relation Extraction [5.776369192706107]
非教師付き関係抽出(URE)は、オープンドメインのプレーンテキストから名前付きエンティティペア間の基礎となる関係を見つけることを目的としている。
比較学習を利用した既存のUREモデルでは、正のサンプルを惹きつけ、より良い分離を促進するために負のサンプルを反発させる効果がある。
非教師関係抽出のためのシームズ表現学習 - 正のペアを単純に活用して表現学習を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-01T02:57:43Z) - HiURE: Hierarchical Exemplar Contrastive Learning for Unsupervised
Relation Extraction [60.80849503639896]
非教師なし関係抽出は、関係範囲や分布に関する事前情報のない自然言語文からエンティティ間の関係を抽出することを目的としている。
本稿では,階層間注目を用いた階層的特徴空間から階層的信号を導出する機能を持つ,HiUREという新しいコントラスト学習フレームワークを提案する。
2つの公開データセットの実験結果は、最先端モデルと比較した場合の教師なし関係抽出におけるHiUREの有効性とロバスト性を示す。
論文 参考訳(メタデータ) (2022-05-04T17:56:48Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Element Intervention for Open Relation Extraction [27.408443348900057]
OpenREは、同じ基盤となる関係を参照する関係インスタンスをクラスタ化することを目的としている。
現在のOpenREモデルは、一般的に遠隔監視から生成されたデータセットに基づいてトレーニングされている。
本稿では,OpenREの手順を因果的観点から再考する。
論文 参考訳(メタデータ) (2021-06-17T14:37:13Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - A logic-based relational learning approach to relation extraction: The
OntoILPER system [0.9176056742068812]
論理に基づく関係学習手法OntoILPERを提案する。
OntoILPERは、例のリッチなリレーショナル表現の利益を享受し、欠点を軽減することができる。
提案手法は統計的手法よりも関係抽出に適していると考えられる。
論文 参考訳(メタデータ) (2020-01-13T12:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。