論文の概要: A quantum Poisson solver implementable on NISQ devices (improved
version)
- arxiv url: http://arxiv.org/abs/2005.00256v3
- Date: Thu, 25 May 2023 02:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-27 00:43:06.863821
- Title: A quantum Poisson solver implementable on NISQ devices (improved
version)
- Title(参考訳): NISQデバイス上で実装可能な量子ポアソンソルバ(改良版)
- Authors: Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Guolong Cui,
Zhiqiang Wei, Yongjian Gu
- Abstract要約: 簡単なRy回転に基づく一次元ポアソン方程式を解くためのコンパクト量子アルゴリズムを提案する。
解誤差はポアソン方程式の有限差分近似からのみ生じる。
我々の量子ポアソン解法(QPS)は、方程式の線形系の次元の対数論である1ビットと2ビットのゲートにおいて3nと4n3のゲート複素性を持つ。
- 参考スコア(独自算出の注目度): 23.69613801851615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving differential equations is one of the most compelling applications of
quantum computing. Most existing quantum algorithms addressing general ordinary
and partial differential equations are thought to be too expensive to execute
successfully on Noisy Intermediate-Scale Quantum (NISQ) devices. Here we
propose a compact quantum algorithm for solving one-dimensional Poisson
equation based on simple Ry rotation. The major operations are performed on
probability amplitudes. Therefore, the present algorithm avoids the need to do
phase estimation, Hamiltonian simulation and arithmetic. The solution error
comes only from the finite difference approximation of the Poisson equation.
Our quantum Poisson solver (QPS) has gate-complexity of 3n in qubits and 4n^3
in one- and two-qubit gates, where n is the logarithmic of the dimension of the
linear system of equations. In terms of solution error {\epsilon}, the
complexity is log(1/{\epsilon}) in qubits and poly(log(1/{\epsilon})) in
operations, which is consist with the best known results. The present QPS may
represent a potential application on NISQ devices.
- Abstract(参考訳): 微分方程式を解くことは、量子コンピューティングの最も魅力的な応用の1つである。
一般の常微分方程式や偏微分方程式に対処する既存の量子アルゴリズムは、ノイズ中間量子(NISQ)デバイスでうまく実行するには高すぎると考えられている。
本稿では、簡単なry回転に基づく1次元ポアソン方程式を解くためのコンパクト量子アルゴリズムを提案する。
主な操作は確率振幅に基づいて行われる。
したがって, 本アルゴリズムは位相推定, ハミルトンシミュレーション, 算術の必要性を回避できる。
解誤差はポアソン方程式の有限差分近似からのみ生じる。
我々の量子ポアソン解法(QPS)は、方程式の線形系の次元の対数論である1ビットと2ビットのゲートにおいて3nと4n^3のゲート複素性を持つ。
解誤差 {\epsilon} の観点では、複雑性は qubits の log(1/{\epsilon}) と演算の poly(log(1/{\epsilon}) であり、最もよく知られた結果からなる。
現在のQPSは、NISQデバイスにおける潜在的な応用を表すかもしれない。
関連論文リスト
- Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
量子コンピュータを用いた結合型古典的高調波発振器系の周波数応答関数の推定問題について検討する。
提案する量子アルゴリズムは,標準的な$sスパース,オーラクルベースのクエリアクセスモデルで動作する。
そこで,本アルゴリズムの簡単な適応により,時間内に無作為な結束木問題を解くことを示す。
論文 参考訳(メタデータ) (2024-05-14T15:28:37Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
原子と分子の衝突に対するシュリンガー方程式を解くためのハイブリッド量子古典アルゴリズムを提案する。
このアルゴリズムはコーン変分原理の$S$-matrixバージョンに基づいており、基本散乱$S$-matrixを計算する。
大規模多原子分子の衝突をシミュレートするために,アルゴリズムをどのようにスケールアップするかを示す。
論文 参考訳(メタデータ) (2023-04-12T18:10:47Z) - Advancing Algorithm to Scale and Accurately Solve Quantum Poisson
Equation on Near-term Quantum Hardware [0.0]
本稿では,ポアソン方程式を高精度かつ動的に調整可能な問題サイズで解くための高度な量子アルゴリズムを提案する。
特に,本研究では,非truncated 固有値を実装することにより,解の精度を保証する高度な回路を提案する。
提案アルゴリズムは,解の精度を高めるだけでなく,より実用的でスケーラブルな回路を構成する。
論文 参考訳(メタデータ) (2022-10-29T18:50:40Z) - Advanced Quantum Poisson Solver in the NISQ era [0.0]
本稿では,ポアソン方程式を高精度かつ動的に調整可能な問題サイズで解くための高度な量子アルゴリズムを提案する。
本研究では,非有理固有値を実装することにより,解の精度を保証できる先進回路を提案する。
提案アルゴリズムは,解の精度を高めるだけでなく,より実用的でスケーラブルな回路を構成する。
論文 参考訳(メタデータ) (2022-09-19T22:17:21Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
我々は、$Theta(n)$-depth回路は、$O(ndlog d)$ acillary qubitsを持つ$Theta(log(nd))で作成可能であることを示す。
我々は、ハミルトンシミュレーション、方程式の線形系解法、量子ランダムアクセスメモリの実現など、異なる量子コンピューティングタスクにおける結果の適用について論じる。
論文 参考訳(メタデータ) (2022-01-27T13:16:30Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
3次元形状と画像のマッチング問題は、NPハードな置換行列制約を持つ二次代入問題(QAP)としてしばしば定式化される。
本稿では,量子ハードウェア上での効率的な実行に適した制約のない問題として,いくつかのQAPの再構成を提案する。
提案アルゴリズムは、将来の量子コンピューティングアーキテクチャにおいて、より高次元にスケールする可能性がある。
論文 参考訳(メタデータ) (2021-07-08T17:59:55Z) - Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation [7.620967781722716]
ポアソン方程式を解くための変分量子アルゴリズムを提案する。
提案手法はポアソン方程式の全ポテンシャルエネルギーをハミルトニアンとして定義する。
項の数は問題の大きさとは無関係であるため、この方法は比較的少ない量子測定を必要とする。
論文 参考訳(メタデータ) (2021-06-17T09:01:53Z) - Variational Quantum algorithm for Poisson equation [4.045204834863644]
ポアソン方程式を解くための変分量子アルゴリズム(VQA)を提案する。
VQAはノイズ中間スケール量子(NISQ)デバイス上で実行される。
数値実験により,本アルゴリズムはポアソン方程式を効果的に解くことができることを示した。
論文 参考訳(メタデータ) (2020-12-13T09:28:04Z) - Estimating the entropy of shallow circuit outputs is hard [77.34726150561087]
シャノンエントロピー推定の意思決定問題バージョンはエントロピー差分(ED)である
量子回路(QED)の類似の問題
オラクルと比較して、これらの問題は指数関数的に大きい回路と同等に難しいものではないことを示す。
論文 参考訳(メタデータ) (2020-02-27T15:32:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。