論文の概要: Breaking RSA Security With A Low Noise D-Wave 2000Q Quantum Annealer:
Computational Times, Limitations And Prospects
- arxiv url: http://arxiv.org/abs/2005.02268v1
- Date: Tue, 5 May 2020 15:04:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-21 03:01:54.170899
- Title: Breaking RSA Security With A Low Noise D-Wave 2000Q Quantum Annealer:
Computational Times, Limitations And Prospects
- Title(参考訳): 低ノイズD-Wave 2000Q量子アニールでRSAのセキュリティを破る:計算時間、限界、展望
- Authors: Riccardo Mengoni, Daniele Ottaviani, Paolino Iorio
- Abstract要約: RSA暗号系はShorの分解アルゴリズムを実行する大規模量子コンピュータで容易に破壊できる。
我々は、低雑音D-Wave 2000Q計算時間に関する広範な研究により、量子アニールによるRSAハッキングの最も有望な戦略を分析した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The RSA cryptosystem could be easily broken with large scale general purpose
quantum computers running Shor's factorization algorithm. Being such devices
still in their infancy, a quantum annealing approach to integer factorization
has recently gained attention. In this work, we analyzed the most promising
strategies for RSA hacking via quantum annealing with an extensive study of the
low noise D-Wave 2000Q computational times, current hardware limitations and
challenges for future developments.
- Abstract(参考訳): RSA暗号系はShorの分解アルゴリズムを実行する大規模汎用量子コンピュータで容易に破壊できる。
このようなデバイスはまだ初期段階にあるため、整数分解に対する量子アニーリングアプローチが最近注目を集めている。
本研究では,低雑音D-Wave 2000Q計算時間,現在のハードウェアの限界,今後の発展に向けた課題について,量子アニールによるRSAハッキングの最も有望な戦略を分析した。
関連論文リスト
- Quantum inspired factorization up to 100-bit RSA number in polynomial time [0.0]
我々はシュノーアの数学的枠組みに基づくRSA因子化ビルディングを攻撃した。
我々は、量子システムにおける最適化問題を符号化する最大256ビットのRSA数を分解する。
結果は現在の通信インフラのセキュリティを損なうものではない。
論文 参考訳(メタデータ) (2024-10-21T18:00:00Z) - On the practicality of quantum sieving algorithms for the shortest vector problem [42.70026220176376]
格子ベースの暗号は、量子後暗号の主要な候補の1つである。
量子攻撃に対する暗号セキュリティは、最短ベクトル問題(SVP)のような格子問題に基づいている
SVPを解くための漸近的な量子スピードアップはGroverの探索に依存している。
論文 参考訳(メタデータ) (2024-10-17T16:54:41Z) - Applications of Post-quantum Cryptography [0.0]
レビューでは、2022年から2023年までの期間に制限された、体系的なスクーピングのレビューが採用されている。
このレビューでは、様々な分野における量子コンピューティングの適用について論じている。
本論文は格子ベース,ハッシュベース,コードベース,等質暗号など,様々なPQCアルゴリズムを解析する。
論文 参考訳(メタデータ) (2024-06-19T06:45:39Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Designing Hash and Encryption Engines using Quantum Computing [2.348041867134616]
データセキュリティを強化するために,量子ベースのハッシュ関数と暗号化について検討する。
量子コンピューティングと古典的手法の統合は、量子コンピューティングの時代におけるデータ保護の可能性を示している。
論文 参考訳(メタデータ) (2023-10-26T14:49:51Z) - Limitations of Noisy Quantum Devices in Computational and Entangling
Power [5.178527492542246]
回路深さが$O(log n)$以上のノイズ量子デバイスは、いかなる量子アルゴリズムにも利点がないことを示す。
また、ノイズ量子デバイスが1次元および2次元の量子ビット接続の下で生成できる最大エンタングルメントについても検討する。
論文 参考訳(メタデータ) (2023-06-05T12:29:55Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Quantum Computing without Quantum Computers: Database Search and Data
Processing Using Classical Wave Superposition [101.18253437732933]
スピン波重畳を用いた磁気データベース探索の実験データを示す。
古典的な波動に基づくアプローチは、量子コンピュータと同じ速度でデータベース検索を行う場合もあると我々は論じる。
論文 参考訳(メタデータ) (2020-12-15T16:21:53Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Post-Quantum Multi-Party Computation [32.75732860329838]
我々は、悪質な時間量子敵に対するセキュリティを備えた古典的機能(平易なモデル)のマルチパーティ計算について研究する。
誤差付き学習における超ポリノミカル量子硬度(LWE)とLWEに基づく円形セキュリティ仮定の量子硬度を仮定する。
その過程で、私たちは独立した関心を持つ可能性のある暗号プリミティブを開発します。
論文 参考訳(メタデータ) (2020-05-23T00:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。