論文の概要: Post-Quantum Multi-Party Computation
- arxiv url: http://arxiv.org/abs/2005.12904v2
- Date: Fri, 20 Nov 2020 18:14:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 23:29:40.769037
- Title: Post-Quantum Multi-Party Computation
- Title(参考訳): 量子後マルチパーティ計算
- Authors: Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, Giulio
Malavolta
- Abstract要約: 我々は、悪質な時間量子敵に対するセキュリティを備えた古典的機能(平易なモデル)のマルチパーティ計算について研究する。
誤差付き学習における超ポリノミカル量子硬度(LWE)とLWEに基づく円形セキュリティ仮定の量子硬度を仮定する。
その過程で、私たちは独立した関心を持つ可能性のある暗号プリミティブを開発します。
- 参考スコア(独自算出の注目度): 32.75732860329838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate the study of multi-party computation for classical
functionalities (in the plain model) with security against malicious
polynomial-time quantum adversaries. We observe that existing techniques
readily give a polynomial-round protocol, but our main result is a construction
of *constant-round* post-quantum multi-party computation. We assume mildly
super-polynomial quantum hardness of learning with errors (LWE), and polynomial
quantum hardness of an LWE-based circular security assumption. Along the way,
we develop the following cryptographic primitives that may be of independent
interest:
1. A spooky encryption scheme for relations computable by quantum circuits,
from the quantum hardness of an LWE-based circular security assumption. This
yields the first quantum multi-key fully-homomorphic encryption scheme with
classical keys.
2. Constant-round zero-knowledge secure against multiple parallel quantum
verifiers from spooky encryption for relations computable by quantum circuits.
To enable this, we develop a new straight-line non-black-box simulation
technique against *parallel* verifiers that does not clone the adversary's
state. This forms the heart of our technical contribution and may also be
relevant to the classical setting.
3. A constant-round post-quantum non-malleable commitment scheme, from the
mildly super-polynomial quantum hardness of LWE.
- Abstract(参考訳): 我々は,悪意ある多項式時間量子敵に対する安全性を持つ古典的機能(プレーンモデル)に対する多人数計算の研究を開始する。
既存の手法は多項式ラウンドプロトコルを容易に与えるが、主な結果は *constant-round* post-quantum のマルチパーティ計算である。
誤りを伴う学習における多項式量子硬度(LWE)とLWEに基づく円形セキュリティ仮定の多項式量子硬度を軽度に仮定する。
その過程で、LWEベースの円形セキュリティ仮定の量子硬度から、量子回路で計算可能な関係のスゴイ暗号化スキームを開発する。
これにより、古典鍵を持つ最初の量子マルチキー完全正則暗号スキームが得られる。
2. 量子回路で計算可能な関係を暗号化する複数の並列量子検証器に対して一定のラウンドゼロ知識が確保される。
これを実現するために、敵の状態をクローンしない *parallel* 検証器に対して、新しい直線非ブラックボックスシミュレーション手法を開発した。
これは私たちの技術貢献の中心となり、古典的な設定にも関係しているかもしれません。
3. LWEの軽度超多項式量子硬度から定ラウンドの非有理コミットメントスキーム。
関連論文リスト
- Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\mathsf{\#P}$-Hardness [10.438299411521099]
近年の分離により、階層構造が崩壊しても持続する硬さの源から量子暗号を構築する可能性が高まっている。
量子暗号は、$mathsfP#P notsubseteq mathsf(io)BQP/qpoly$という非常に穏やかな仮定に基づいている。
論文 参考訳(メタデータ) (2024-09-23T17:45:33Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Commitments from Quantum One-Wayness [0.0]
本研究は、片方向関数の自然な量子緩和である片方向状態発生器を研究する。
根本的な問題は、このタイプの量子ワンウェイネスが量子暗号を実現するのに十分であるかどうかである。
我々は、純粋な状態出力を持つ一方通行状態生成器が量子ビットのコミットメントを暗示し、セキュアなマルチパーティ計算を行うことを証明した。
論文 参考訳(メタデータ) (2023-10-17T18:48:22Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Indistinguishability Obfuscation of Null Quantum Circuits and
Applications [17.72516323214125]
我々は、ヌル量子回路(量子ヌル-iO)の不明瞭性難解化の概念を研究する。
我々は、量子null-iOが、我々の研究に先立って、仮定さえも存在しないような、新しい暗号プリミティブのシリーズを実現する方法を示す。
論文 参考訳(メタデータ) (2021-06-11T00:08:14Z) - Quantum Fully Homomorphic Encryption by Integrating Pauli One-time Pad
with Quaternions [4.182969308816531]
量子完全同型暗号(QFHE)は、暗号化されたデータ上で量子回路を評価することができる。
本稿では、Su(2)の四元数に依存することにより、パウリのワンタイムパッド暗号化を拡張する新しいQFHE方式を提案する。
論文 参考訳(メタデータ) (2020-12-08T04:54:02Z) - On The Round Complexity of Secure Quantum Computation [17.832774161583036]
我々は、悪意のある敵に対するセキュリティを備えた2パーティ(2PQC)およびマルチパーティ(MPQC)設定において、セキュアな量子計算のための最初の定ラウンドプロトコルを構築した。
論文 参考訳(メタデータ) (2020-11-23T05:20:28Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
古典的アリス(Alice)と量子的ボブ(Quantum Bob)が古典的なチャネルを通してのみ通信できるような設定を考える。
悪質な量子逆数の場合,ブラックボックスシミュレーションを用いた2次元量子関数を実現することは,一般に不可能であることを示す。
我々は、QMA関係Rの古典的量子知識(PoQK)プロトコルを入力として、古典的当事者によって検証可能なRのゼロ知識PoQKを出力するコンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-15T17:55:31Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。