論文の概要: Quantum inspired factorization up to 100-bit RSA number in polynomial time
- arxiv url: http://arxiv.org/abs/2410.16355v1
- Date: Mon, 21 Oct 2024 18:00:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:19.034933
- Title: Quantum inspired factorization up to 100-bit RSA number in polynomial time
- Title(参考訳): 多項式時間における量子インスピレーションによる最大100ビットRSA数分解
- Authors: Marco Tesoro, Ilaria Siloi, Daniel Jaschke, Giuseppe Magnifico, Simone Montangero,
- Abstract要約: 我々はシュノーアの数学的枠組みに基づくRSA因子化ビルディングを攻撃した。
我々は、量子システムにおける最適化問題を符号化する最大256ビットのRSA数を分解する。
結果は現在の通信インフラのセキュリティを損なうものではない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Classical public-key cryptography standards rely on the Rivest-Shamir-Adleman (RSA) encryption protocol. The security of this protocol is based on the exponential computational complexity of the most efficient classical algorithms for factoring large semiprime numbers into their two prime components. Here, we attack RSA factorization building on Schnorr's mathematical framework where factorization translates into a combinatorial optimization problem. We solve the optimization task via tensor network methods, a quantum-inspired classical numerical technique. This tensor network Schnorr's sieving algorithm displays numerical evidence of a polynomial scaling of the resources with the bit-length of the semiprime. We factorize RSA numbers up to 100 bits encoding the optimization problem in quantum systems with up to 256 qubits. Only the high-order polynomial scaling of the required resources limits the factorization of larger numbers. Although these results do not currently undermine the security of the present communication infrastructure, they strongly highlight the urgency of implementing post-quantum cryptography or quantum key distribution.
- Abstract(参考訳): 古典的な公開鍵暗号標準は、RSA(Rivest-Shamir-Adleman)暗号プロトコルに依存している。
このプロトコルのセキュリティは、大きな半素数を2つの素成分に分解する最も効率的な古典的アルゴリズムの指数関数的計算複雑性に基づいている。
ここでは、因子化が組合せ最適化問題に変換されるシュノーラーの数学的枠組みに基づくRSA因子化構築を攻撃する。
量子に着想を得た古典的数値手法であるテンソルネットワーク法を用いて最適化課題を解く。
このテンソルネットワークSchnorrのシービングアルゴリズムは、半素数のビット長を持つ資源の多項式スケーリングの数値的な証拠を示す。
我々は、最大256量子ビットの量子システムにおいて、最適化問題を符号化する最大100ビットのRSA数を分解する。
必要な資源の高階多項式スケーリングのみが、より大きな数の分解を制限する。
これらの結果は現在の通信インフラのセキュリティを損なうものではないが、量子後暗号や量子鍵分布の実装の緊急性を強調している。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Post-Quantum Security: Origin, Fundamentals, and Adoption [0.29465623430708915]
まず、離散対数とよく知られた2つの非対称なセキュリティスキーム、RSAと楕円曲線暗号の関係について述べる。
次に、量子アルゴリズムによる攻撃に対して安全と考えられるスキームの基盤である格子ベースの暗号の基礎を示す。
最後に、このような量子セーフな2つのアルゴリズム(KyberとDilithium)について詳しく説明する。
論文 参考訳(メタデータ) (2024-05-20T09:05:56Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - A comment on "Factoring integers with sublinear resources on a
superconducting quantum processor" [0.0]
そこで我々はSchnorr's lattice-based integer factorizationアルゴリズムのオープンソース実装について述べる。
我々の実装は、シュノーラーの整数を70ビットまでしか持たないハイブリッド量子+古典版に対する主張された部分線型格子次元が示している。
我々は、我々の実装が、他のハイブリッド量子/古典的整数分解アルゴリズムのアイデアをテストするための、コミュニティの場として機能することを願っている。
論文 参考訳(メタデータ) (2023-07-18T21:46:54Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Factoring integers with sublinear resources on a superconducting quantum
processor [11.96383198580683]
Shorのアルゴリズムは、公開鍵暗号システムに基づく情報セキュリティに深刻な挑戦をしている。
広く使われているRSA-2048スキームを破るためには、数百万の物理量子ビットが必要である。
本稿では,古典的格子削減法と量子近似最適化アルゴリズムを組み合わせることで,整数分解のための普遍量子アルゴリズムについて報告する。
論文 参考訳(メタデータ) (2022-12-23T14:45:02Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vaziraniアルゴリズムは、オラクルに符号化されたビット文字列を決定できる。
我々はベルンシュタイン・ヴァジラニアルゴリズムの量子資源を詳細に分析する。
絡み合いがない場合、初期状態における量子コヒーレンス量とアルゴリズムの性能が直接関係していることが示される。
論文 参考訳(メタデータ) (2022-05-26T20:32:36Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Using Shor's algorithm on near term Quantum computers: a reduced version [0.0]
我々は、ノイズの多い量子デバイス上で分解可能な数値の範囲を拡大するステップを推し進めるShorのアルゴリズムの縮小版を導入する。
特に、ほとんどのケースで注目すべき結果が得られており、しばしば提案されたアルゴリズムの1つで与えられた数を分解できる。
論文 参考訳(メタデータ) (2021-12-23T15:36:59Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z) - Breaking RSA Security With A Low Noise D-Wave 2000Q Quantum Annealer:
Computational Times, Limitations And Prospects [0.0]
RSA暗号系はShorの分解アルゴリズムを実行する大規模量子コンピュータで容易に破壊できる。
我々は、低雑音D-Wave 2000Q計算時間に関する広範な研究により、量子アニールによるRSAハッキングの最も有望な戦略を分析した。
論文 参考訳(メタデータ) (2020-05-05T15:04:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。