論文の概要: An Optimal Control Theory for the Traveling Salesman Problem and Its
Variants
- arxiv url: http://arxiv.org/abs/2005.03186v1
- Date: Thu, 7 May 2020 00:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 00:00:21.081179
- Title: An Optimal Control Theory for the Traveling Salesman Problem and Its
Variants
- Title(参考訳): 旅行セールスマン問題とその変数に対する最適制御理論
- Authors: I. M. Ross, R. J. Proulx, M. Karpenko
- Abstract要約: 旅行セールスマン問題(TSP)とその多くの変種は,グラフ上の関数最適化問題としてモデル化できることを示す。
この新しいアプローチの主な利点は、測定可能な関数の自家空間における特定のアプリケーション固有の問題のモデリングを容易にすることである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the traveling salesman problem (TSP) and its many variants may
be modeled as functional optimization problems over a graph. In this
formulation, all vertices and arcs of the graph are functionals; i.e., a
mapping from a space of measurable functions to the field of real numbers. Many
variants of the TSP, such as those with neighborhoods, with forbidden
neighborhoods, with time-windows and with profits, can all be framed under this
construct. In sharp contrast to their discrete-optimization counterparts, the
modeling constructs presented in this paper represent a fundamentally new
domain of analysis and computation for TSPs and their variants. Beyond its
apparent mathematical unification of a class of problems in graph theory, the
main advantage of the new approach is that it facilitates the modeling of
certain application-specific problems in their home space of measurable
functions. Consequently, certain elements of economic system theory such as
dynamical models and continuous-time cost/profit functionals can be directly
incorporated in the new optimization problem formulation. Furthermore, subtour
elimination constraints, prevalent in discrete optimization formulations, are
naturally enforced through continuity requirements. The price for the new
modeling framework is nonsmooth functionals. Although a number of theoretical
issues remain open in the proposed mathematical framework, we demonstrate the
computational viability of the new modeling constructs over a sample set of
problems to illustrate the rapid production of end-to-end TSP solutions to
extensively-constrained practical problems.
- Abstract(参考訳): 旅行セールスマン問題(TSP)とその多くの変種は,グラフ上の関数最適化問題としてモデル化できることを示す。
この定式化において、グラフのすべての頂点と弧は函数であり、すなわち、可測函数の空間から実数体への写像である。
tspの多くの変種、例えば、禁止された近隣の地域、時間窓と利益がある地域は、全てこの構成の下で構成することができる。
離散最適化とは対照的に,本論文で提示したモデリング構造は,TSPとその変種に対する解析と計算の基本的な新しい領域を表現している。
グラフ理論における問題のクラスを数学的に統一するだけでなく、新しいアプローチの主な利点は、測定可能な関数のホーム空間における特定の応用固有の問題のモデリングを容易にすることである。
したがって、力学モデルや連続時間コスト/利益関数といった経済システム理論の特定の要素は、新しい最適化問題定式化に直接組み込むことができる。
さらに、離散最適化の定式化で一般的なサブター除去制約は、連続性要件によって自然に強制される。
新しいモデリングフレームワークの価格は、非スムース関数である。
提案した数学的枠組みでは,多くの理論的問題が解き放たれているが,本論文では,広範囲に制約された実践的問題に対するエンドツーエンドのTSPソリューションの迅速な生成を示すために,新しいモデリング構成の計算可能性を示す。
関連論文リスト
- Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
ラプラシア正規化成層モデル(Laplacian regularized Stratified Model、LRSM)は、サブプロブレムの明示的または暗黙的なネットワーク構造を利用するモデルである。
本稿では,LRSMにおけるグラフ重みの重要性と感度を示し,その感度が任意に大きいことを示す。
本稿では,1つの最適化問題を解くことで,モデルパラメータを適合させながらグラフを共同学習する汎用的手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T06:06:29Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - A Pareto-optimal compositional energy-based model for sampling and
optimization of protein sequences [55.25331349436895]
深層生成モデルは、生命科学における逆問題に対する一般的な機械学習ベースのアプローチとして登場した。
これらの問題は、データ分布の学習に加えて、興味のある複数の特性を満たす新しい設計をサンプリングする必要があることが多い。
論文 参考訳(メタデータ) (2022-10-19T19:04:45Z) - Sparse Polynomial Optimization: Theory and Practice [5.27013884159732]
本書は、この課題に重要な科学的意味を持って取り組むためのいくつかの取り組みを提示している。
これは計算複雑性の観点からうまくスケールする代替の最適化スキームを提供する。
制約のない問題や制約のない問題に対して、緩和の疎開的階層を提示する。
論文 参考訳(メタデータ) (2022-08-23T18:56:05Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
本研究では,オンラインデータから時間変化グラフを学習するアルゴリズムフレームワークを提案する。
モデルに依存しない、すなわち抽象的な定式化において理論的に解析することができる。
フレームワークを3つのよく知られたグラフ学習モデル、すなわちガウス図形モデル(GGM)、構造方程式モデル(SEM)、滑らか性に基づくモデル(SBM)に特化する。
論文 参考訳(メタデータ) (2021-10-21T09:46:44Z) - Joint Continuous and Discrete Model Selection via Submodularity [1.332560004325655]
機械学習のモデル選択問題では、意味のある構造を持つ優れたモデルに対する欲求は、典型的には正規化された最適化問題によって表される。
しかし、多くのシナリオでは、数値的に意味のある構造が離散空間において特定され、難しい非最適化問題を引き起こす。
我々は、ロバスト最適化によって動機づけられた特定の問題クラスに対して、単純な連続的あるいは離散的な制約をいかに扱うかを示す。
論文 参考訳(メタデータ) (2021-02-17T21:14:47Z) - Trace Ratio Optimization with an Application to Multi-view Learning [10.196148937138275]
Stiefel多様体上のトレース比最適化問題を検討する。
この問題の特別なケースは、フィッシャー線形判別分析、正準相関解析、および不均衡プロクリスト問題から生じている。
新たなフレームワークとそのインスタンス化コンクリートモデルを提案し,実証した。
論文 参考訳(メタデータ) (2021-01-12T04:38:09Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
ジャンクションツリーアルゴリズムは、実行時の保証と正確なMAP推論のための最も一般的な解である。
本稿では,ノードのクローン化による新たなグラフ変換手法を提案する。
論文 参考訳(メタデータ) (2019-12-27T13:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。