論文の概要: Physics-informed neural network for ultrasound nondestructive
quantification of surface breaking cracks
- arxiv url: http://arxiv.org/abs/2005.03596v1
- Date: Thu, 7 May 2020 16:32:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 22:50:03.158949
- Title: Physics-informed neural network for ultrasound nondestructive
quantification of surface breaking cracks
- Title(参考訳): 表面破壊き裂の超音波非破壊定量化のための物理インフォームニューラルネットワーク
- Authors: Khemraj Shukla, Patricio Clark Di Leoni, James Blackshire, Daniel
Sparkman and George Em Karniadakis
- Abstract要約: 本研究では,金属板の表面破壊ひび割れの同定と特徴化の問題を解決するために,最適化された物理情報ニューラルネットワーク(PINN)を導入する。
PINNは、損失関数に部分微分方程式系の残基を追加することによって、学習過程におけるデータと物理を組み合わせることができるニューラルネットワークである。
PINNを用いて,1%の誤差で行う金属板の音速を推定し,音速の空間依存性を許容することにより,音速が低下した位置としてひび割れを識別・特徴付ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an optimized physics-informed neural network (PINN) trained to
solve the problem of identifying and characterizing a surface breaking crack in
a metal plate. PINNs are neural networks that can combine data and physics in
the learning process by adding the residuals of a system of Partial
Differential Equations to the loss function. Our PINN is supervised with
realistic ultrasonic surface acoustic wave data acquired at a frequency of 5
MHz. The ultrasonic surface wave data is represented as a surface deformation
on the top surface of a metal plate, measured by using the method of laser
vibrometry. The PINN is physically informed by the acoustic wave equation and
its convergence is sped up using adaptive activation functions. The adaptive
activation function uses a scalable hyperparameter in the activation function,
which is optimized to achieve best performance of the network as it changes
dynamically the topology of the loss function involved in the optimization
process. The usage of adaptive activation function significantly improves the
convergence, notably observed in the current study. We use PINNs to estimate
the speed of sound of the metal plate, which we do with an error of 1\%, and
then, by allowing the speed of sound to be space dependent, we identify and
characterize the crack as the positions where the speed of sound has decreased.
Our study also shows the effect of sub-sampling of the data on the sensitivity
of sound speed estimates. More broadly, the resulting model shows a promising
deep neural network model for ill-posed inverse problems.
- Abstract(参考訳): 本研究では,金属板の表面破壊ひび割れの同定と特徴化の問題を解決するために,最適化された物理情報ニューラルネットワーク(PINN)を導入する。
PINNは、損失関数に部分微分方程式系の残基を追加することによって、学習過程におけるデータと物理を組み合わせることができるニューラルネットワークである。
PINNは5MHzの周波数で取得した現実的な超音波音波データを教師する。
超音波表面波データは、金属板の上面の表面変形として表現され、レーザ振動計法を用いて測定される。
PINNは音波方程式により物理的に情報を伝達し、その収束を適応活性化関数を用いて高速化する。
アダプティブアクティベーション関数は、アクティベーション関数にスケーラブルなハイパーパラメータを使用し、最適化プロセスに関わる損失関数のトポロジを動的に変化させるため、ネットワークの最高の性能を達成するように最適化される。
アダプティブアクティベーション関数の使用は、現在の研究で特に観察されている収束を著しく改善する。
PINNを用いて金属板の音速を1\%の誤差で推定し,音速の空間依存性を許容することにより,音速が低下した位置としてひび割れを識別・特徴付ける。
また,データのサブサンプリングが音速推定の感度に及ぼす影響についても検討した。
より広範に、結果のモデルは、不適切な逆問題に対する有望なディープニューラルネットワークモデルを示している。
関連論文リスト
- Data-driven localized waves and parameter discovery in the massive
Thirring model via extended physics-informed neural networks with interface
zones [3.522950356329991]
深層学習を用いた大規模Thiring(MT)モデルにおいて,データ駆動型局所波動解とパラメータ発見について検討した。
高次局所波解に対しては、拡張PINN(XPINN)とドメイン分解を用いる。
実験結果から, XPINNsの改良により, 収束速度が速く, 計算の複雑さを低減できることがわかった。
論文 参考訳(メタデータ) (2023-09-29T13:50:32Z) - Deep learning for full-field ultrasonic characterization [7.120879473925905]
本研究では、最近の機械学習の進歩を活用して、物理に基づくデータ分析プラットフォームを構築する。
直接反転と物理インフォームドニューラルネットワーク(PINN)の2つの論理について検討した。
論文 参考訳(メタデータ) (2023-01-06T05:01:05Z) - Deep learning based sferics recognition for AMT data processing in the
dead band [5.683853455697258]
AMT (Audio magnetotellurics) 音波データ処理では、ある時間帯における干渉信号の欠如は、一般的にATTデッドバンドのエネルギー不足をもたらす。
本稿では,長期にわたって冗長に記録されたデータからスフェリック信号を自動的に認識するディープ畳み込みニューラルネットワーク(CNN)を提案する。
本手法はS/Nを大幅に改善し, デッドバンドのエネルギー不足を効果的に解決する。
論文 参考訳(メタデータ) (2022-09-22T02:31:28Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
MRV(MR resonance velocimetry)は、流体の速度場を測定するために医療や工学で広く用いられている非侵襲的な技術である。
これまでの研究では、境界(例えば血管)の形状が先駆体として知られていた。
我々は、ノイズの多いMRVデータのみを用いて、最も可能性の高い境界形状と減音速度場を推定する物理インフォームニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-16T12:56:09Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。