論文の概要: IoT and Neural Network-Based Water Pumping Control System For Smart
Irrigation
- arxiv url: http://arxiv.org/abs/2005.04158v1
- Date: Fri, 8 May 2020 16:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-20 20:07:42.399942
- Title: IoT and Neural Network-Based Water Pumping Control System For Smart
Irrigation
- Title(参考訳): スマート洗浄のためのIoTおよびニューラルネットワークによる水汲み上げ制御システム
- Authors: M.E. Karar, M.F. Al-Rasheed, A.F. Al-Rasheed, O. Reyad
- Abstract要約: 本稿では,センサセットとMLP(Multi-Layer Perceptron)ニューラルネットワークをベースとしたモノのインターネット(IoT)を用いた灌水プロセスにおいて,無駄な水を節約することを目的とする。
開発されたシステムは、Arduinoボードを使用してセンサーデータを処理し、水ポンプを自動的に制御する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article aims at saving the wasted water in the process of irrigation
using the Internet of Things (IoT) based on a set of sensors and Multi-Layer
Perceptron (MLP) neural network. The developed system handles the sensor data
using the Arduino board to control the water pump automatically. The sensors
measure the environmental factors; namely temperature, humidity, and soil
moisture to estimate the required time for the operation of water irrigation.
The water pump control system consists of software and hardware tools such as
Arduino Remote XY interface and electronic sensors in the framework of IoT
technology. The machine learning algorithm such as the MLP neural network plays
an important role to support the decision of automatic control of IoT-based
irrigation system, managing the water consumption effectively.
- Abstract(参考訳): 本稿では,センサセットとMLP(Multi-Layer Perceptron)ニューラルネットワークをベースとしたモノのインターネット(IoT)を用いた灌水プロセスにおいて,無駄な水を節約することを目的とする。
本システムでは、arduinoボードを用いてセンサデータを処理し、水ポンプを自動的に制御する。
センサーは環境要因、すなわち温度、湿度、土壌水分を測定し、灌水作業に必要な時間を推定する。
水ポンプ制御システムは、Arduino Remote XYインターフェースのようなソフトウェアとハードウェアツールと、IoT技術のフレームワークにおける電子センサーで構成されている。
MLPニューラルネットワークのような機械学習アルゴリズムは、IoTベースの灌水システムの自動制御の決定を効果的に管理する上で、重要な役割を果たす。
関連論文リスト
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
本稿では,人工知能アルゴリズムの利用と水質モニタリングのための高感度センシング技術に対処する車両プロトタイプを提案する。
車両には水質パラメータと水深を測定するための高品質なセンサーが装備されている。
ステレオカメラにより、実際の環境でのマクロプラスチックの検出と検出も可能である。
論文 参考訳(メタデータ) (2024-10-08T10:35:32Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - IoT based Smart Water Quality Prediction for Biofloc Aquaculture [1.820324411024166]
養殖におけるバイオフロック技術は、マニュアルを微生物タンパク質に変換することによって、未使用の飼料の再利用を可能にする高度なシステムに変換する。
この記事では、センサを使用してデータを収集し、機械学習モデルを使用して分析し、人工知能(AI)の助けを借りて決定を生成し、ユーザに通知を送信するシステムを紹介した。
論文 参考訳(メタデータ) (2022-07-27T03:00:48Z) - IoT-based Route Recommendation for an Intelligent Waste Management
System [61.04795047897888]
本研究は, 空間制約を考慮したIoT対応廃棄物管理システムにおいて, 経路推薦のためのインテリジェントなアプローチを提案する。
我々のソリューションは、ビンの状態と座標を考慮に入れた複数レベルの意思決定プロセスに基づいている。
論文 参考訳(メタデータ) (2022-01-01T12:36:22Z) - An Automated Data Engineering Pipeline for Anomaly Detection of IoT
Sensor Data [0.0]
チップ技術、IoT(Internet of Things)、クラウドコンピューティング、人工知能といったシステムが、現在の問題を解決する可能性を高めている。
データ分析と機械学習/ディープラーニングの使用により、基盤となるパターンを学習し、IoTセンサから生成された大量のデータから何を学んだかに基づいて決定することができる。
プロセスにはIoTセンサ、Raspberry Pi、Amazon Web Services(AWS)、スマートホームセキュリティシステムの異常なケースを特定するための複数の機械学習技術の使用が含まれる。
論文 参考訳(メタデータ) (2021-09-28T15:57:29Z) - An artificial intelligence and Internet of things based automated
irrigation system [8.283810659689589]
モノのインターネット(IoT)デバイスは、あらゆる領域で使われ始めている。
灌水に関する操作と決定は、ほとんどが人々によって行われます。
IoTデバイスやセンサから収集されたデータは、通信チャネル経由で送信され、MongoDBに格納される。
論文 参考訳(メタデータ) (2021-04-01T21:05:26Z) - Autonomous Maintenance in IoT Networks via AoI-driven Deep Reinforcement
Learning [73.85267769520715]
IoT(Internet of Things)は、デプロイされるデバイスやアプリケーションの数の増加とともに、ネットワークのメンテナンス手順に大きな課題をもたらしている。
部分観測可能なマルコフ決定プロセスとして,IoTネットワークにおける自律的メンテナンスの問題を定式化する。
深層強化学習アルゴリズム (drl) を用いて, 保守手順が整っているか否かを判断するエージェントを訓練し, 前者の場合, 適切なメンテナンス方法が必要となる。
論文 参考訳(メタデータ) (2020-12-31T11:19:51Z) - Machine Learning and Soil Humidity Sensing: Signal Strength Approach [0.0]
既存のソリューションは、感知されたデータを無線チャネルを介して送信する、空腹/露光センサーから受信したデータに基づいています。
本研究は, 深層学習技術を用いた湿度センサを実現する, 低コストで低消費電力なLoRaシステムの概念を探求する。
論文 参考訳(メタデータ) (2020-11-16T21:00:36Z) - Smart Irrigation IoT Solution using Transfer Learning for Neural
Networks [0.0]
本稿では,既存のベクター回帰の代替手法と比較して,ニューラルネットワークの性能を示す。
そこで我々は,IoTエッジデバイスにおけるニューラルネットワークの処理能力を低減するために,トランスファーラーニング(transfer learning)を提案する。
提案したIoTアーキテクチャは、スマート灌水のための完全なソリューションである。
論文 参考訳(メタデータ) (2020-09-27T05:31:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。