論文の概要: A Compressive Classification Framework for High-Dimensional Data
- arxiv url: http://arxiv.org/abs/2005.04383v2
- Date: Thu, 12 Nov 2020 14:14:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 06:33:09.782552
- Title: A Compressive Classification Framework for High-Dimensional Data
- Title(参考訳): 高次元データの圧縮分類枠組み
- Authors: Muhammad Naveed Tabassum and Esa Ollila
- Abstract要約: 本稿では,データ次元がサンプルサイズよりもかなり高い設定のための圧縮分類フレームワークを提案する。
提案手法は線形判別分析に基づく正規化判別分析(CRDA)と呼ばれる。
識別規則における強しきい値化を促進するジョイントスパーシティを用いることで、重要な特徴を選択できる。
- 参考スコア(独自算出の注目度): 12.284934135116515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a compressive classification framework for settings where the data
dimensionality is significantly higher than the sample size. The proposed
method, referred to as compressive regularized discriminant analysis (CRDA) is
based on linear discriminant analysis and has the ability to select significant
features by using joint-sparsity promoting hard thresholding in the
discriminant rule. Since the number of features is larger than the sample size,
the method also uses state-of-the-art regularized sample covariance matrix
estimators. Several analysis examples on real data sets, including image,
speech signal and gene expression data illustrate the promising improvements
offered by the proposed CRDA classifier in practise. Overall, the proposed
method gives fewer misclassification errors than its competitors, while at the
same time achieving accurate feature selection results. The open-source R
package and MATLAB toolbox of the proposed method (named compressiveRDA) is
freely available.
- Abstract(参考訳): 本稿では,データ次元がサンプルサイズよりもかなり高い設定のための圧縮分類フレームワークを提案する。
圧縮正則化判別分析(CRDA)と呼ばれる手法は線形判別分析に基づいており、識別規則におけるハードしきい値化を促進するジョイントスパーシティーを用いて重要な特徴を選択できる。
特徴数はサンプルサイズよりも大きいため、この方法は最先端の正規化サンプル共分散行列推定器も使用する。
画像,音声信号,遺伝子発現データなどの実データに対するいくつかの分析例は,提案したCRDA分類器が実践で提供する有望な改善を示している。
提案手法は,提案手法の誤分類誤差を競合他社よりも少なくすると同時に,正確な特徴選択結果を実現する。
提案手法のオープンソースRパッケージとMATLABツールボックス(ExpressiveRDA)は無償で利用可能である。
関連論文リスト
- Adaptively Robust and Sparse K-means Clustering [5.535948428518607]
本稿では,標準的なK-meansアルゴリズムのこれらの実用的限界に対処するため,適応的に頑健でスパースなK-meansクラスタリング(ARSK)を提案する。
頑健性のために,各観測値に冗長な誤差成分を導入し,グループスパースペナルティを用いて追加パラメータをペナルティ化する。
高次元ノイズ変数の影響に対応するために、重みを取り入れ、重みベクトルの空間性を制御するペナルティを実装することにより、目的関数を変更する。
論文 参考訳(メタデータ) (2024-07-09T15:20:41Z) - Regularized Linear Discriminant Analysis Using a Nonlinear Covariance
Matrix Estimator [11.887333567383239]
線形判別分析(LDA)はデータ分類において広く用いられている手法である。
LDAは、データ共分散行列が不条件であるときに非効率になる。
このような状況に対応するために正規化LDA法が提案されている。
論文 参考訳(メタデータ) (2024-01-31T11:37:14Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance
Model [101.74172837046382]
そこで本研究では,魚の識別比を最大化する2次分類手法を提案する。
数値シミュレーションにより,提案した分類器は,合成データと実データの両方において古典的R-QDAよりも優れるだけでなく,計算量の削減も要求されることがわかった。
論文 参考訳(メタデータ) (2020-06-25T12:00:26Z) - Robust Locality-Aware Regression for Labeled Data Classification [5.432221650286726]
本稿では,ロバスト局所性認識回帰(RLAR)という特徴抽出フレームワークを提案する。
本モデルでは,クラス間の平均差を使わずに,適応的に境界表現学習を行うために再ターゲット回帰を導入する。
外れ値の乱れを緩和し、過度な適合を防止するため、L2,1ノルムによる正規化項とともに回帰項と局所性を考慮した項を計測する。
論文 参考訳(メタデータ) (2020-06-15T11:36:59Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。