論文の概要: Spectrally-Corrected and Regularized QDA Classifier for Spiked Covariance Model
- arxiv url: http://arxiv.org/abs/2503.13582v1
- Date: Mon, 17 Mar 2025 17:21:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 14:14:01.341442
- Title: Spectrally-Corrected and Regularized QDA Classifier for Spiked Covariance Model
- Title(参考訳): スパイク共分散モデルのためのスペクトル補正および正規化QDA分類器
- Authors: Wenya Luo, Hua Li, Zhidong Bai, Zhijun Liu,
- Abstract要約: 二次判別分析(QDA)は分類問題において広く用いられている手法である。
SR-QDAと呼ばれるスペクトル補正と正則化技術を利用した新しいQDA手法を提案する。
その結果, SR-QDAは特に中等度・高次元の状況において, 極めて良好に機能することが示唆された。
- 参考スコア(独自算出の注目度): 5.7070383874412745
- License:
- Abstract: Quadratic discriminant analysis (QDA) is a widely used method for classification problems, particularly preferable over Linear Discriminant Analysis (LDA) for heterogeneous data. However, QDA loses its effectiveness in high-dimensional settings, where the data dimension and sample size tend to infinity. To address this issue, we propose a novel QDA method utilizing spectral correction and regularization techniques, termed SR-QDA. The regularization parameters in our method are selected by maximizing the Fisher-discriminant ratio. We compare SR-QDA with QDA, regularized quadratic discriminant analysis (R-QDA), and several other competitors. The results indicate that SR-QDA performs exceptionally well, especially in moderate and high-dimensional situations. Empirical experiments across diverse datasets further support this conclusion.
- Abstract(参考訳): 二次判別分析(QDA)は分類問題において広く用いられる手法であり、不均一なデータに対する線形判別分析(LDA)よりも特に好ましい。
しかし、QDAはデータ次元とサンプルサイズが無限大となるような高次元設定では有効性が失われる。
この問題に対処するために,SR-QDAと呼ばれるスペクトル補正と正則化技術を利用した新しいQDA手法を提案する。
本手法の正則化パラメータは,フィッシャー判別比を最大化することにより選択する。
SR-QDAとQDA、正規化2次判別分析(R-QDA)、その他いくつかの競合とを比較した。
その結果, SR-QDAは特に中等度・高次元の状況において, 極めて良好に機能することが示唆された。
多様なデータセットにわたる実証実験は、この結論をさらに支持している。
関連論文リスト
- Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Spectrally-Corrected and Regularized Linear Discriminant Analysis for
Spiked Covariance Model [2.517838307493912]
本稿では、スペクトル補正および正規化LDA(SRLDA)と呼ばれる線形判別分析の改善を提案する。
SRLDAはスパイクモデル仮定の下で線形分類大域最適解を持つことが証明された。
異なるデータセットに対する実験により、SRLDAアルゴリズムは、現在使われているツールよりも分類と次元の削減が優れていることが示された。
論文 参考訳(メタデータ) (2022-10-08T00:47:50Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Self-Weighted Robust LDA for Multiclass Classification with Edge Classes [111.5515086563592]
SWRLDAと呼ばれる,l21ノルムを基準とした新しい自己重み付き頑健なLDAを提案する。
提案するSWRLDAは実装が容易で,実際に高速に収束する。
論文 参考訳(メタデータ) (2020-09-24T12:32:55Z) - High-Dimensional Quadratic Discriminant Analysis under Spiked Covariance
Model [101.74172837046382]
そこで本研究では,魚の識別比を最大化する2次分類手法を提案する。
数値シミュレーションにより,提案した分類器は,合成データと実データの両方において古典的R-QDAよりも優れるだけでなく,計算量の削減も要求されることがわかった。
論文 参考訳(メタデータ) (2020-06-25T12:00:26Z) - Improved Design of Quadratic Discriminant Analysis Classifier in
Unbalanced Settings [19.763768111774134]
分類のための二次判別分析(QDA)またはその正規化バージョン(R-QDA)は推奨されないことが多い。
本稿では2つの正規化パラメータと修正バイアスに基づく改良されたR-QDAを提案する。
論文 参考訳(メタデータ) (2020-06-11T12:17:05Z) - A Compressive Classification Framework for High-Dimensional Data [12.284934135116515]
本稿では,データ次元がサンプルサイズよりもかなり高い設定のための圧縮分類フレームワークを提案する。
提案手法は線形判別分析に基づく正規化判別分析(CRDA)と呼ばれる。
識別規則における強しきい値化を促進するジョイントスパーシティを用いることで、重要な特徴を選択できる。
論文 参考訳(メタデータ) (2020-05-09T06:55:00Z) - Robust Generalised Quadratic Discriminant Analysis [6.308539010172309]
GQDAにおける分類規則は, サンプル平均ベクトルとトレーニングサンプルのサンプル分散行列に基づいており, データの汚染下では極めて非腐食である。
本稿では, GQDA分類器の性能について, 平均ベクトルとそれを用いた分散行列の古典的推定器を, 様々な頑健な推定器に置き換えた際の検討を行った。
論文 参考訳(メタデータ) (2020-04-11T18:21:06Z) - Saliency-based Weighted Multi-label Linear Discriminant Analysis [101.12909759844946]
複数ラベルの分類課題を解決するために,LDA(Linear Discriminant Analysis)の新たな変種を提案する。
提案手法は,個々の試料の重量を定義する確率モデルに基づく。
サリエンシに基づく重み付きマルチラベル LDA アプローチは,様々なマルチラベル分類問題の性能改善につながることが示されている。
論文 参考訳(メタデータ) (2020-04-08T19:40:53Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
ラッソ型問題に適した行列逆転のない効率的な暗黙微分アルゴリズムを提案する。
提案手法は,解の空間性を利用して高次元データにスケールする。
論文 参考訳(メタデータ) (2020-02-20T18:43:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。