論文の概要: Design Challenges for GDPR RegTech
- arxiv url: http://arxiv.org/abs/2005.12138v1
- Date: Thu, 21 May 2020 18:55:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-19 03:31:28.717918
- Title: Design Challenges for GDPR RegTech
- Title(参考訳): GDPR RegTechの設計課題
- Authors: Paul Ryan, Martin Crane and Rob Brennan
- Abstract要約: 方法論のアカウンタビリティの原則は、組織が規則の遵守を証明できることを要求する。
コンプライアンスソフトウェアソリューションに関する調査では、コンプライアンスを示す能力において、大きなギャップが示されている。
RegTechは金融コンプライアンスに大きな成功を収め、リスクの低減、コスト削減、金融規制の強化を実現している。
- 参考スコア(独自算出の注目度): 0.3867363075280544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Accountability Principle of the GDPR requires that an organisation can
demonstrate compliance with the regulations. A survey of GDPR compliance
software solutions shows significant gaps in their ability to demonstrate
compliance. In contrast, RegTech has recently brought great success to
financial compliance, resulting in reduced risk, cost saving and enhanced
financial regulatory compliance. It is shown that many GDPR solutions lack
interoperability features such as standard APIs, meta-data or reports and they
are not supported by published methodologies or evidence to support their
validity or even utility. A proof of concept prototype was explored using a
regulator based self-assessment checklist to establish if RegTech best practice
could improve the demonstration of GDPR compliance. The application of a
RegTech approach provides opportunities for demonstrable and validated GDPR
compliance, notwithstanding the risk reductions and cost savings that RegTech
can deliver. This paper demonstrates a RegTech approach to GDPR compliance can
facilitate an organisation meeting its accountability obligations.
- Abstract(参考訳): GDPRのアカウンタビリティ原則は、組織が規則に準拠することを示すことを要求する。
GDPRコンプライアンスソフトウェアソリューションに関する調査では、コンプライアンスを示す能力において、大きなギャップが示されている。
対照的に、regtechは最近、金融コンプライアンスに大きな成功を収め、リスクの低減、コスト削減、金融規制コンプライアンスの強化に繋がった。
多くのgdprソリューションには標準apiやメタデータ、レポートといった相互運用性機能がなく、その妥当性や有用性をサポートするための公開方法論やエビデンスではサポートされていないことが示されている。
RegTechのベストプラクティスがGDPRコンプライアンスの実証を改善することができるかどうかを確認するために、規制当局ベースの自己評価チェックリストを用いて、コンセプトプロトタイプの検証を行った。
RegTechアプローチの適用は、RegTechが提供できるリスク削減とコスト削減にかかわらず、実証可能かつ検証可能なGDPRコンプライアンスの機会を提供する。
本稿では、GDPRコンプライアンスに対するRegTechアプローチが、組織が説明責任の義務を満たすのに役立つことを実証する。
関連論文リスト
- Streamlining Compliance And Risk Management with Regtech Solutions [0.0]
RegTechは、最先端技術を使用して規制コンプライアンスのプロセスを改善することに焦点を当てた、急速に成長する金融サービスセクターである。
この論文は、危機管理におけるコンプライアンスコストの上昇と技術への依存の高まりにより、RegTechが最も有望な市場の一つになる理由を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-01-31T06:09:56Z) - RIRAG: Regulatory Information Retrieval and Answer Generation [51.998738311700095]
本稿では,質問を自動生成し,関連する規制通路と組み合わせる,問合せペアを生成するタスクを紹介する。
我々は、Abu Dhabi Global Markets (ADGM) の財務規制文書から得られた27,869の質問を含むObliQAデータセットを作成する。
本稿では,RIRAG(Regulation Information Retrieval and Answer Generation)システムをベースラインとして設計し,新しい評価基準であるRePASを用いて評価する。
論文 参考訳(メタデータ) (2024-09-09T14:44:19Z) - Certified Safe: A Schematic for Approval Regulation of Frontier AI [0.0]
承認規制スキームは、企業が法的に市場を拡大できない場合や、場合によっては、規制当局の明確な承認なしに製品を開発する場合である。
本報告では、トレーニング前に精査を開始し、デプロイ後の監視を継続する、最大規模のAIプロジェクトのみに対する承認規制スキーマを提案する。
論文 参考訳(メタデータ) (2024-08-12T15:01:03Z) - Enhancing Legal Compliance and Regulation Analysis with Large Language Models [0.0]
本研究では,法律規定を正確に分類し,コンプライアンスチェックを自動化するために,LLM(Large Language Models)の適用について検討する。
以上より, LLMsは, 法的コンプライアンスと規制分析の効率化, 特に手作業量削減, 適切な時間的金融制約下での精度向上に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-26T16:40:49Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Towards an Enforceable GDPR Specification [49.1574468325115]
プライバシ・バイ・デザイン(PbD)は、EUなどの現代的なプライバシー規制によって規定されている。
PbDを実現する1つの新しい技術は強制(RE)である
法律規定の正式な仕様を作成するための一連の要件と反復的な方法論を提示する。
論文 参考訳(メタデータ) (2024-02-27T09:38:51Z) - Trustworthy Artificial Intelligence and Process Mining: Challenges and
Opportunities [0.8602553195689513]
プロセスマイニングは、AIコンプライアンスプロセスの実行に事実に基づく可視性を得るために有用なフレームワークを提供することができることを示す。
AI規制コンプライアンスプロセスの不確実性を分析し、修正し、監視する自動化アプローチを提供する。
論文 参考訳(メタデータ) (2021-10-06T12:50:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
我々は、BNNモデルの軌道が与えられた状態に到達する確率に対して、安全でない状態の集合を避けながら低い境界を計算する。
我々は、制御と強化学習の文脈において、下限を用いて、与えられた制御ポリシーの安全性保証を提供する。
論文 参考訳(メタデータ) (2021-05-21T05:23:57Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。