論文の概要: Data-Driven Continuum Dynamics via Transport-Teleport Duality
- arxiv url: http://arxiv.org/abs/2005.13358v2
- Date: Tue, 30 Jun 2020 20:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 08:48:41.704682
- Title: Data-Driven Continuum Dynamics via Transport-Teleport Duality
- Title(参考訳): トランスポート-テレポート双対性によるデータ駆動連続体ダイナミクス
- Authors: Jong-Hoon Ahn
- Abstract要約: 古典力学を表現するための巧妙な数学的変換を,量の消失と再出現のポイントワイズなプロセスとして導入する。
実世界のオブジェクトのダイナミクスを学ぶのに、観測データと単純な学習モデルだけで十分であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, machine learning methods have been widely used to study
physical systems that are challenging to solve with governing equations.
Physicists and engineers are framing the data-driven paradigm as an alternative
approach to physical sciences. In this paradigm change, the deep learning
approach is playing a pivotal role. However, most learning architectures do not
inherently incorporate conservation laws in the form of continuity equations,
and they require dense data to learn the dynamics of conserved quantities. In
this study, we introduce a clever mathematical transform to represent the
classical dynamics as a point-wise process of disappearance and reappearance of
a quantity, which dramatically reduces model complexity and training data for
machine learning of transport phenomena. We demonstrate that just a few
observational data and a simple learning model can be enough to learn the
dynamics of real-world objects. The approach does not require the explicit use
of governing equations and only depends on observation data. Because the
continuity equation is a general equation that any conserved quantity should
obey, the applicability may range from physical to social and medical sciences
or any field where data are conserved quantities.
- Abstract(参考訳): 近年,制御方程式で解くのが難しい物理システムの研究に機械学習手法が広く用いられている。
物理学者とエンジニアは、物理科学の代替アプローチとしてデータ駆動パラダイムをフレームにしている。
このパラダイム変革では、ディープラーニングアプローチが重要な役割を担っています。
しかし、ほとんどの学習アーキテクチャは本質的に連続性方程式の形で保存則を取り入れておらず、保存量のダイナミクスを学ぶために密集したデータを必要とする。
本研究では,古典力学を量の消失と再出現のポイントワイズなプロセスとして表現する巧妙な数学的変換を導入し,輸送現象の機械学習のためのモデル複雑性とトレーニングデータを大幅に削減する。
実世界のオブジェクトのダイナミクスを学ぶのに、観測データと単純な学習モデルだけで十分であることを示す。
このアプローチでは、制御方程式の明示的な使用は必要とせず、観測データのみに依存する。
連続性方程式は保存量に従わなければならない一般的な方程式であるため、応用性は物理的から社会的・医学的な科学、あるいはデータが保存量である分野まで様々である。
関連論文リスト
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Constructing Effective Machine Learning Models for the Sciences: A
Multidisciplinary Perspective [77.53142165205281]
線形回帰モデルに変数間の変換や相互作用を手動で追加することで、非線形解が必ずしも改善されないことを示す。
データ駆動モデルを構築する前にこれを認識する方法や、そのような分析が本質的に解釈可能な回帰モデルへの移行にどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2022-11-21T17:48:44Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Data-Efficient Learning for Complex and Real-Time Physical Problem
Solving using Augmented Simulation [49.631034790080406]
本稿では,大理石を円形迷路の中心まで航行する作業について述べる。
実システムと対話する数分以内に,複雑な環境で大理石を動かすことを学習するモデルを提案する。
論文 参考訳(メタデータ) (2020-11-14T02:03:08Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
推論は変数の関係を理解し、物理的に解釈可能なモデルを導出することを意味する。
機械学習モデルだけでも優れた近似器であるが、物理学の最も基本的な法則を尊重しないことが多い。
これは、地球系の知識を発見できるアルゴリズムを開発し、適用するための、長期的なAIの集合的なアジェンダである。
論文 参考訳(メタデータ) (2020-10-18T16:58:20Z) - Learning Dynamical Systems with Side Information [2.28438857884398]
いくつかの軌跡のノイズ観測から力学系を学習するための枠組みを提案する。
多くのアプリケーションで自然に発生する6種類のサイド情報を識別する。
本研究では,物理・細胞生物学における基礎モデルの力学を学習するための側面情報の付加価値と,疫学におけるモデルの力学の学習と制御について述べる。
論文 参考訳(メタデータ) (2020-08-23T23:30:48Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。