論文の概要: Investigating Estimated Kolmogorov Complexity as a Means of
Regularization for Link Prediction
- arxiv url: http://arxiv.org/abs/2006.04258v2
- Date: Tue, 23 Feb 2021 18:09:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-24 07:48:01.130339
- Title: Investigating Estimated Kolmogorov Complexity as a Means of
Regularization for Link Prediction
- Title(参考訳): リンク予測における正規化の指標としてのコルモゴロフ複雑性の検討
- Authors: Paris D. L. Flood, Ramon Vi\~nas, Pietro Li\`o
- Abstract要約: グラフにおけるリンク予測は、ネットワーク科学と機械学習の分野で重要なタスクである。
グラフのコルモゴロフ複雑性の近似に基づくリンク予測のためのフレキシブルな正規化手法について検討する。
- 参考スコア(独自算出の注目度): 1.0312968200748116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Link prediction in graphs is an important task in the fields of network
science and machine learning. We investigate a flexible means of regularization
for link prediction based on an approximation of the Kolmogorov complexity of
graphs that is differentiable and compatible with recent advances in link
prediction algorithms. Informally, the Kolmogorov complexity of an object is
the length of the shortest computer program that produces the object. Complex
networks are often generated, in part, by simple mechanisms; for example, many
citation networks and social networks are approximately scale-free and can be
explained by preferential attachment. A preference for predicting graphs with
simpler generating mechanisms motivates our choice of Kolmogorov complexity as
a regularization term. In our experiments the regularization method shows good
performance on many diverse real-world networks, however we determine that this
is likely due to an aggregation method rather than any actual estimation of
Kolmogorov complexity.
- Abstract(参考訳): グラフにおけるリンク予測は、ネットワーク科学と機械学習の分野で重要なタスクである。
リンク予測アルゴリズムの最近の進歩と相性のあるグラフのコルモゴロフ複雑性の近似に基づいて,リンク予測のための柔軟な正規化手法について検討した。
直観的には、オブジェクトのコルモゴロフ複雑性はオブジェクトを生成する最も短いコンピュータプログラムの長さである。
例えば、多くの引用ネットワークやソーシャルネットワークは、大まかにスケールフリーであり、優先的なアタッチメントによって説明できる。
単純な生成メカニズムでグラフを予測することを好むことは、正規化項としてのコルモゴロフ複雑性の選択を動機付ける。
実験では,多種多様な実世界のネットワークにおいて,正規化手法は良好な性能を示すが,コルモゴロフ複雑性の実際の推定よりも,集約法によるものと考えられる。
関連論文リスト
- Generalized Simplicial Attention Neural Networks [22.171364354867723]
我々はGSAN(Generalized Simplicial Attention Neural Networks)を紹介する。
GSANは、マスク付き自己意図層を用いて、単純な複合体に生きるデータを処理する。
これらのスキームは、タスク指向の方法で、連続した順序の隣り合う単純さに関連するデータを組み合わせる方法を学ぶ。
論文 参考訳(メタデータ) (2023-09-05T11:29:25Z) - An Approach for Link Prediction in Directed Complex Networks based on
Asymmetric Similarity-Popularity [0.0]
本稿では,有向ネットワーク用に明示的に設計されたリンク予測手法を提案する。
これは、最近無方向性ネットワークで成功した類似性-人気パラダイムに基づいている。
アルゴリズムは、隠れた類似性を最も短い経路距離として近似し、リンクの非対称性とノードの人気を捉え、決定するエッジウェイトを使用する。
論文 参考訳(メタデータ) (2022-07-15T11:03:25Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
ブロックモデルは、ネットワーク構造データのクラスタリングとコミュニティ検出のための標準ランダムグラフモデルである。
ネットワークトポロジに基づく推定器は、モデルパラメータが一定の閾値以下である場合、スパースグラフの確率よりも大幅に向上する。
パラメータ領域全体でラベルの任意の部分で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-05-24T00:03:25Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Random Feature Approximation for Online Nonlinear Graph Topology
Identification [7.992550355579789]
グラフトポロジ推定のためのカーネルベースのアルゴリズムを提案する。
私たちは、現実世界のネットワークが希少なトポロジを示すことが多いという事実を利用しています。
実データおよび合成データを用いて行った実験により,提案手法が競合より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-19T12:48:12Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
結合ネットワークトポロジ推論は、異種グラフ信号から複数のグラフラプラシア行列を学習する標準的な問題を表す。
新規な構造化融合正規化に基づく一般グラフ推定器を提案する。
提案するグラフ推定器は高い計算効率と厳密な理論保証の両方を享受できることを示す。
論文 参考訳(メタデータ) (2021-03-05T04:42:32Z) - Parsimonious Inference [0.0]
parsimonious inferenceは任意のアーキテクチャ上の推論の情報理論的な定式化である。
提案手法は,効率的な符号化と巧妙なサンプリング戦略を組み合わせて,クロスバリデーションを伴わない予測アンサンブルを構築する。
論文 参考訳(メタデータ) (2021-03-03T04:13:14Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。