論文の概要: Symbolic Regression using Mixed-Integer Nonlinear Optimization
- arxiv url: http://arxiv.org/abs/2006.06813v1
- Date: Thu, 11 Jun 2020 20:53:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 12:37:29.339640
- Title: Symbolic Regression using Mixed-Integer Nonlinear Optimization
- Title(参考訳): 混合整数非線形最適化を用いた記号回帰
- Authors: Vernon Austel, Cristina Cornelio, Sanjeeb Dash, Joao Goncalves, Lior
Horesh, Tyler Josephson, Nimrod Megiddo
- Abstract要約: シンボリック回帰(SR)問題は、機械学習において難しい問題である。
混合整数非線形最適化と明示列挙法を組み合わせたハイブリッドアルゴリズムを提案する。
我々のアルゴリズムは、いくつかの合成データセットに対して、最先端のSRソフトウェアと最近の物理学に触発されたAI Feynmanという手法で競合していることを示す。
- 参考スコア(独自算出の注目度): 9.638685454900047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Symbolic Regression (SR) problem, where the goal is to find a regression
function that does not have a pre-specified form but is any function that can
be composed of a list of operators, is a hard problem in machine learning, both
theoretically and computationally. Genetic programming based methods, that
heuristically search over a very large space of functions, are the most
commonly used methods to tackle SR problems. An alternative mathematical
programming approach, proposed in the last decade, is to express the optimal
symbolic expression as the solution of a system of nonlinear equations over
continuous and discrete variables that minimizes a certain objective, and to
solve this system via a global solver for mixed-integer nonlinear programming
problems. Algorithms based on the latter approach are often very slow. We
propose a hybrid algorithm that combines mixed-integer nonlinear optimization
with explicit enumeration and incorporates constraints from dimensional
analysis. We show that our algorithm is competitive, for some synthetic data
sets, with a state-of-the-art SR software and a recent physics-inspired method
called AI Feynman.
- Abstract(参考訳): シンボリック回帰(SR)問題(英語版)(Symbolic Regression, SR)は、あらかじめ指定された形式を持たず、演算子のリストを構成することができる任意の関数である回帰関数を見つけることを目的としており、理論的にも計算的にも機械学習において難しい問題である。
遺伝的プログラミングに基づく手法は、非常に大きな関数空間をヒューリスティックに探索し、SR問題に対処する最も一般的な方法である。
過去10年間に提案された別の数学的プログラミング手法は、ある目的を最小化する連続および離散変数上の非線形方程式系の解として最適記号表現を表現し、混合整数非線形プログラミング問題の大域的解法を用いてこのシステムを解くことである。
後者のアプローチに基づくアルゴリズムは、しばしば非常に遅い。
本稿では,混合整数非線形最適化と明示的列挙法を組み合わせたハイブリッドアルゴリズムを提案する。
我々のアルゴリズムは、いくつかの合成データセットに対して、最先端のSRソフトウェアと最近の物理学に触発されたAI Feynmanという手法で競合していることを示す。
関連論文リスト
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
凸最適化問題を解くための新しい勾配のないアルゴリズムを提案する。
このような問題は医学、物理学、機械学習で発生する。
両種類の雑音下で提案アルゴリズムの収束保証を行う。
論文 参考訳(メタデータ) (2024-11-21T10:26:17Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Accelerated Gradient Algorithms with Adaptive Subspace Search for
Instance-Faster Optimization [6.896308995955336]
グラディエントベースのミニマックス最適アルゴリズムは、継続的最適化と機械学習の開発を促進する。
本稿では,勾配に基づくアルゴリズムの設計と解析を行う新しい手法を機械学習に直接応用する。
論文 参考訳(メタデータ) (2023-12-06T01:16:10Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
等式制約付き非線形非IBS最適化問題に対する適応的不正確なニュートン法を開発した。
ベンチマーク非線形問題,LVMのデータによる制約付きロジスティック回帰,PDE制約問題において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-28T06:33:37Z) - OKRidge: Scalable Optimal k-Sparse Ridge Regression [21.17964202317435]
スパースリッジ回帰のための高速アルゴリズムOKRidgeを提案する。
また,ビームサーチを利用した解法を温める方法を提案する。
論文 参考訳(メタデータ) (2023-04-13T17:34:44Z) - Algorithmic Solution for Systems of Linear Equations, in
$\mathcal{O}(mn)$ time [0.0]
方程式の線形系の探索解を超高速に求める新しいアルゴリズムを提案する。
実行時間は最先端のメソッドと比較して非常に短い。
この論文はアルゴリズム収束の理論的証明も含んでいる。
論文 参考訳(メタデータ) (2021-04-26T13:40:31Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - Hybrid Variance-Reduced SGD Algorithms For Nonconvex-Concave Minimax
Problems [26.24895953952318]
我々は,非ガンスミニマックス問題のクラスを解くアルゴリズムを開発した。
また、単一または2つのミニバッチ誘導体でも機能する。
論文 参考訳(メタデータ) (2020-06-27T03:05:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。