論文の概要: Improved Fixed-Budget Results via Drift Analysis
- arxiv url: http://arxiv.org/abs/2006.07019v1
- Date: Fri, 12 Jun 2020 09:04:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 04:18:30.199037
- Title: Improved Fixed-Budget Results via Drift Analysis
- Title(参考訳): ドリフト解析による固定予算の改善
- Authors: Timo K\"otzing and Carsten Witt
- Abstract要約: 我々は、期待される最適化時間を導出するための鍵となるドリフト理論を固定予算の視点に転送する。
いわゆるgreed-admittingシナリオにおけるドリフトの反復に関する最初の、簡単に使えるステートメントは、すぐに期待される関数値のバウンダリに変換される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fixed-budget theory is concerned with computing or bounding the fitness value
achievable by randomized search heuristics within a given budget of fitness
function evaluations. Despite recent progress in fixed-budget theory, there is
a lack of general tools to derive such results. We transfer drift theory, the
key tool to derive expected optimization times, to the fixed-budged
perspective. A first and easy-to-use statement concerned with iterating drift
in so-called greed-admitting scenarios immediately translates into bounds on
the expected function value. Afterwards, we consider a more general tool based
on the well-known variable drift theorem. Applications of this technique to the
LeadingOnes benchmark function yield statements that are more precise than the
previous state of the art.
- Abstract(参考訳): 固定予算理論は、適合関数評価の所定の予算内でランダム化された探索ヒューリスティックによって達成可能な適合値の計算や境界付けに関するものである。
固定予算理論の最近の進歩にもかかわらず、そのような結果を得るための一般的なツールが不足している。
期待最適化時間を導出するための重要なツールであるドリフト理論を固定ブッディング視点に移す。
いわゆるgred-admittingシナリオの反復ドリフトに関する最初の、そして使いやすいステートメントは、期待された関数値の境界に直ちに変換される。
その後、よく知られた変数ドリフト定理に基づくより一般的なツールを考える。
このテクニックをLeadingOnesベンチマーク関数に適用すると、以前の最先端技術よりも正確なステートメントが生成される。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Fine-Grained Dynamic Framework for Bias-Variance Joint Optimization on Data Missing Not at Random [2.8165314121189247]
レコメンデーションシステムやディスプレイ広告など、ほとんどの実践的なアプリケーションでは、収集されたデータには欠落する値が含まれることが多い。
我々は,バイアスと分散を協調的に最適化する,体系的なきめ細かな動的学習フレームワークを開発した。
論文 参考訳(メタデータ) (2024-05-24T10:07:09Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Improved Convergence of Score-Based Diffusion Models via Prediction-Correction [15.772322871598085]
スコアベース生成モデル(SGM)は、複雑なデータ分布からサンプリングする強力なツールである。
本稿では,一般的な予測器・相関器方式のバージョンを考慮し,この問題に対処する。
まず、不正確なランゲヴィン力学を用いて最終分布を推定し、次にその過程を逆転する。
論文 参考訳(メタデータ) (2023-05-23T15:29:09Z) - Towards Reliable Uncertainty Quantification via Deep Ensembles in
Multi-output Regression Task [0.0]
本研究は,多出力回帰タスクにおいて,近似ベイズ推論であるディープアンサンブルアプローチについて検討することを目的とする。
増大する不確実性の過小評価の傾向を初めて観察する。
本稿では,その不確実性定量化性能を向上させるために,ポストホックキャリブレーション法を適用したディープアンサンブルフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T05:10:57Z) - Exact Non-Oblivious Performance of Rademacher Random Embeddings [79.28094304325116]
本稿では,Rademacherランダムプロジェクションの性能を再検討する。
入力データに関して数値的に鋭く、曖昧でない新しい統計的保証を確立する。
論文 参考訳(メタデータ) (2023-03-21T11:45:27Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Adversarial Robustness Guarantees for Gaussian Processes [22.403365399119107]
ガウス過程(GP)は、モデルの不確実性の原理的計算を可能にし、安全性に重要なアプリケーションに魅力的です。
境界付き摂動に対するモデル決定の不変性として定義されるGPの対向的堅牢性を分析するためのフレームワークを提案する。
我々は境界を洗練し、任意の$epsilon > 0$に対して、我々のアルゴリズムが有限個の反復で実際の値に$epsilon$-closeの値に収束することを保証していることを示す分岐とバウンドのスキームを開発する。
論文 参考訳(メタデータ) (2021-04-07T15:14:56Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。