論文の概要: Two-Layer Neural Networks for Partial Differential Equations:
Optimization and Generalization Theory
- arxiv url: http://arxiv.org/abs/2006.15733v2
- Date: Thu, 10 Dec 2020 20:43:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 03:07:21.070396
- Title: Two-Layer Neural Networks for Partial Differential Equations:
Optimization and Generalization Theory
- Title(参考訳): 偏微分方程式に対する2層ニューラルネットワークの最適化と一般化理論
- Authors: Tao Luo and Haizhao Yang
- Abstract要約: 勾配降下法は二階線形PDEを解くための最小二乗最適化の大域最小化器を同定できることを示す。
また,2階線形PDEと2層ニューラルネットワークの最小二乗最適化の一般化誤差を解析した。
- 参考スコア(独自算出の注目度): 4.243322291023028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of solving partial differential equations (PDEs) can be
formulated into a least-squares minimization problem, where neural networks are
used to parametrize PDE solutions. A global minimizer corresponds to a neural
network that solves the given PDE. In this paper, we show that the gradient
descent method can identify a global minimizer of the least-squares
optimization for solving second-order linear PDEs with two-layer neural
networks under the assumption of over-parametrization. We also analyze the
generalization error of the least-squares optimization for second-order linear
PDEs and two-layer neural networks, when the right-hand-side function of the
PDE is in a Barron-type space and the least-squares optimization is regularized
with a Barron-type norm, without the over-parametrization assumption.
- Abstract(参考訳): 偏微分方程式(PDE)を解く問題は、ニューラルネットワークを用いてPDE解をパラメータ化する最小二乗最小化問題に定式化することができる。
大域最小化器は、与えられたPDEを解決するニューラルネットワークに対応する。
本稿では,2層ニューラルネットワークを用いた2次線形PDEを過度なパラメータ化を前提とした最小二乗最適化のグローバル最小化手法を提案する。
また、二階線形PDEと二層ニューラルネットワークの最小二乗最適化の一般化誤差を、PDEの右辺関数がバロン型空間にあり、最小二乗最適化がバロン型ノルムで正規化されるときにも解析する。
関連論文リスト
- A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
偏微分方程式(PDE)を解くためのスケーラブルな事前条件付き原始ハイブリッド勾配アルゴリズムを提案する。
本稿では,提案手法の性能を,一般的なディープラーニングアルゴリズムと比較する。
その結果,提案手法は効率的かつ堅牢に動作し,安定に収束することが示唆された。
論文 参考訳(メタデータ) (2024-11-09T20:39:10Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities [0.0]
この戦略は、偏微分方程式のニューラルネットワークサロゲートモデルを効率的に訓練するために使用できる。
提案したニューラルブートストラップ法(以下 NBM と呼ぶ)は,PDE システムの有限離散化残基の評価に基づいている。
NBMは他のPINNタイプのフレームワークとメモリとトレーニングの速度で競合することを示す。
論文 参考訳(メタデータ) (2022-10-25T20:13:26Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Solving PDEs on Unknown Manifolds with Machine Learning [8.220217498103315]
本稿では,未知多様体上の楕円型PDEを解くためのメッシュフリー計算フレームワークと機械学習理論を提案する。
提案したNNソルバは,新しいデータポイント上の一般化とほぼ同一の誤差を持つ新しいデータポイント上でPDEを強固に一般化できることを示す。
論文 参考訳(メタデータ) (2021-06-12T03:55:15Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。