論文の概要: Symmetric Positive Semi-definite Riemannian Geometry with Application to
Domain Adaptation
- arxiv url: http://arxiv.org/abs/2007.14272v2
- Date: Tue, 4 Aug 2020 16:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 01:44:57.972265
- Title: Symmetric Positive Semi-definite Riemannian Geometry with Application to
Domain Adaptation
- Title(参考訳): 対称正半定義リーマン幾何学と領域適応への応用
- Authors: Or Yair, Almog Lahav, and Ronen Talmon
- Abstract要約: 対称正半定値行列(SPSD)の幾何学に関する新しい結果を示す。
本稿では,ドメイン適応(DA)のアルゴリズムを提案し,その性能を2つのアプリケーションで示す。
- 参考スコア(独自算出の注目度): 7.126737403006778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present new results on the Riemannian geometry of symmetric
positive semi-definite (SPSD) matrices. First, based on an existing
approximation of the geodesic path, we introduce approximations of the
logarithmic and exponential maps. Second, we present a closed-form expression
for Parallel Transport (PT). Third, we derive a canonical representation for a
set of SPSD matrices. Based on these results, we propose an algorithm for
Domain Adaptation (DA) and demonstrate its performance in two applications:
fusion of hyper-spectral images and motion identification.
- Abstract(参考訳): 本稿では、対称正の半定値行列(SPSD)のリーマン幾何学に関する新しい結果を示す。
まず、既存の測地線経路の近似に基づいて、対数および指数写像の近似を導入する。
次に,パラレルトランスポート(pt)のための閉形式式を提案する。
第3に、SPSD行列の集合に対する標準表現を導出する。
これらの結果に基づき,領域適応アルゴリズム(da)を提案し,その性能を2つの応用(ハイパースペクトル画像の融合と動き同定)で実証する。
関連論文リスト
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
相対表現はゼロショットモデルの縫合に対する確立されたアプローチである。
相対変換において正規化手順を導入し、非等方的再スケーリングや置換に不変となる。
第二に、クラス内のクラスタリングを促進するトポロジカル正規化損失である、微調整された相対表現におけるトポロジカルデシフィケーションの展開を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:09:22Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
本稿では,アフィニティ行列からクラスタ情報を復元するための正規化プロジェクション行列近似フレームワークを提案する。
3つの異なるペナルティ関数について検討し, それぞれが有界, 正, スパースシナリオに対応するように調整した。
合成および実世界の両方のデータセットで行った数値実験により、我々の正規化射影行列近似アプローチはクラスタリング性能において最先端の手法を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-26T15:18:22Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
Fisher-Rao情報幾何学は、ツールを微分幾何学から活用することができる。
楕円分布の枠組みにおけるこれらの幾何学的ツールの実用的利用について述べる。
論文 参考訳(メタデータ) (2023-10-02T09:23:32Z) - Adaptive Log-Euclidean Metrics for SPD Matrix Learning [73.12655932115881]
広く使われているログユークリッド計量(LEM)を拡張した適応ログユークリッド計量(ALEM)を提案する。
実験および理論的結果から,SPDニューラルネットワークの性能向上における提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-26T18:31:52Z) - Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG
Signals [24.798859309715667]
共分散行列の分布を扱うための新しい手法を提案する。
本稿では,脳コンピュータインタフェースの領域適応におけるワッサースタイン距離の効率的なサロゲートであることを示す。
論文 参考訳(メタデータ) (2023-03-10T09:08:46Z) - GeomNet: A Neural Network Based on Riemannian Geometries of SPD Matrix
Space and Cholesky Space for 3D Skeleton-Based Interaction Recognition [2.817412580574242]
本稿では3次元骨格配列から2人のインタラクションを表現・分類するための新しい手法を提案する。
提案手法は,3次元人間の活動理解のための3つのベンチマーク上での2人インタラクション認識において,競合的な結果が得られることを示す。
論文 参考訳(メタデータ) (2021-11-25T13:57:43Z) - On Geometric Connections of Embedded and Quotient Geometries in
Riemannian Fixed-rank Matrix Optimization [5.876141028192136]
本稿では,埋め込みおよび商測地の下でのリーマン最適化問題の幾何学的ランドスケープ接続を確立するための一般的な手順を提案する。
固定ランク行列最適化において,特定のリーマン測度を持つ2つの測度間のアルゴリズム的接続を観測する。
結果は、文学における未回答の疑問に対して、いくつかの新しい理論的洞察を与える。
論文 参考訳(メタデータ) (2021-10-23T03:13:56Z) - Nonconvex Factorization and Manifold Formulations are Almost Equivalent in Low-rank Matrix Optimization [8.59387261480044]
我々は、広く研究された多様体の幾何学的地形接続と、低ランク正半定値(PSD)および一般行列最適化における分解公式を考える。
サンドイッチ関係は、ある定式化から別の定式化へのより定量的な幾何学的性質の伝達に利用できることを示す。
論文 参考訳(メタデータ) (2021-08-03T22:14:01Z) - q-Paths: Generalizing the Geometric Annealing Path using Power Means [51.73925445218366]
我々は、幾何学と算術の混合を特別なケースとして含むパスのファミリーである$q$-pathsを紹介した。
幾何経路から離れた小さな偏差がベイズ推定に経験的利得をもたらすことを示す。
論文 参考訳(メタデータ) (2021-07-01T21:09:06Z) - Improving Metric Dimensionality Reduction with Distributed Topology [68.8204255655161]
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
論文 参考訳(メタデータ) (2021-06-14T17:19:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。