論文の概要: Improving Metric Dimensionality Reduction with Distributed Topology
- arxiv url: http://arxiv.org/abs/2106.07613v1
- Date: Mon, 14 Jun 2021 17:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-15 18:49:29.544255
- Title: Improving Metric Dimensionality Reduction with Distributed Topology
- Title(参考訳): 分散トポロジーによる計量次元の低減
- Authors: Alexander Wagner, Elchanan Solomon, Paul Bendich
- Abstract要約: DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも多くの一般的なデータセットで優れています。
- 参考スコア(独自算出の注目度): 68.8204255655161
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a novel approach to dimensionality reduction combining techniques
of metric geometry and distributed persistent homology, in the form of a
gradient-descent based method called DIPOLE. DIPOLE is a
dimensionality-reduction post-processing step that corrects an initial
embedding by minimizing a loss functional with both a local, metric term and a
global, topological term. By fixing an initial embedding method (we use
Isomap), DIPOLE can also be viewed as a full dimensionality-reduction pipeline.
This framework is based on the strong theoretical and computational properties
of distributed persistent homology and comes with the guarantee of almost sure
convergence. We observe that DIPOLE outperforms popular methods like UMAP,
t-SNE, and Isomap on a number of popular datasets, both visually and in terms
of precise quantitative metrics.
- Abstract(参考訳): そこで本研究では,DIPOLEと呼ばれる勾配差に基づく手法を用いて,距離幾何学と分散持続ホモロジーの技法を組み合わせた次元削減手法を提案する。
DIPOLEは、局所的、計量的項と大域的、位相的項の両方で損失関数を最小化し、初期埋め込みを補正する次元推論後処理ステップである。
初期埋込法の修正(Isomapを使用する)により、DIPOLEは全次元縮小パイプラインと見なすこともできる。
このフレームワークは分散持続ホモロジーの強い理論的および計算的性質に基づいており、ほぼ確実な収束を保証する。
DIPOLEは、UMAP、t-SNE、Isomapといった一般的な手法よりも、視覚的にも正確な定量的指標でも、多くの一般的なデータセットで優れています。
関連論文リスト
- A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Learning Topology-Preserving Data Representations [9.710409273484464]
位相保存データ表現(次元減少)を学習する手法を提案する。
この手法の中核は、元の高次元データと潜時空間における低次元表現との間の表現トポロジディバージェンス(RTD)の最小化である。
提案手法は, 線形相関, 三重項距離ランキング精度, 永続バーコード間のワッサーシュタイン距離によって測定された, 最先端の競合相手よりも, データ多様体のグローバル構造とトポロジーをよりよく保存する。
論文 参考訳(メタデータ) (2023-01-31T22:55:04Z) - Linear Convergence of Natural Policy Gradient Methods with Log-Linear
Policies [115.86431674214282]
我々は、無限水平割引マルコフ決定過程を考察し、自然政策勾配(NPG)とQ-NPG法の収束率を対数線形ポリシークラスで検討する。
両手法が線形収束率と $mathcalO (1/epsilon2)$サンプル複雑度を, 単純で非適応的な幾何的に増加するステップサイズを用いて達成できることを示す。
論文 参考訳(メタデータ) (2022-10-04T06:17:52Z) - Laplacian-based Cluster-Contractive t-SNE for High Dimensional Data
Visualization [20.43471678277403]
本稿では t-SNE に基づく新しいグラフベース次元削減手法 LaptSNE を提案する。
具体的には、LaptSNEはグラフラプラシアンの固有値情報を利用して、低次元埋め込みにおけるポテンシャルクラスタを縮小する。
ラプラシアン合成目的による最適化を考える際には、より広い関心を持つであろう勾配を解析的に計算する方法を示す。
論文 参考訳(メタデータ) (2022-07-25T14:10:24Z) - Manifold learning-based polynomial chaos expansions for high-dimensional
surrogate models [0.0]
システム記述における不確実性定量化(UQ)のための多様体学習に基づく手法を提案する。
提案手法は高精度な近似を達成でき、UQタスクの大幅な高速化につながる。
論文 参考訳(メタデータ) (2021-07-21T00:24:15Z) - Geometric variational inference [0.0]
変分推論 (VI) またはマルコフ・チェイン・モンテカルロ (MCMC) 技術は点推定を超えて用いられる。
本研究は,リーマン幾何学とフィッシャー情報量に基づく幾何学的変分推論(geoVI)を提案する。
変換によって誘導される座標系で表される分布は、特に単純であり、正確な変分近似を可能にする。
論文 参考訳(メタデータ) (2021-05-21T17:18:50Z) - GELATO: Geometrically Enriched Latent Model for Offline Reinforcement
Learning [54.291331971813364]
オフライン強化学習アプローチは、近近法と不確実性認識法に分けられる。
本研究では,この2つを潜在変動モデルに組み合わせることのメリットを実証する。
提案したメトリクスは、分布サンプルのアウトの品質と、データ内のサンプルの不一致の両方を測定します。
論文 参考訳(メタデータ) (2021-02-22T19:42:40Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Non-Convex Exact Community Recovery in Stochastic Block Model [31.221745716673546]
近年,対称ブロックモデル(SBM)に基づくグラフのコミュニティ検出が注目されている。
この問題の対数的疎度構造において、提案した2段階法は、$mathcalO(nlog2n/loglog n)$ timeにおいて、情報理論の限界まで正確に2つのコミュニティを復元できることを示す。
また, 提案手法の有効性を実証し, 理論的発展を補完するために, 合成データセットと実データセットの両方で数値実験を行った。
論文 参考訳(メタデータ) (2020-06-29T07:03:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。