論文の概要: Green Offloading in Fog-Assisted IoT Systems: An Online Perspective
Integrating Learning and Control
- arxiv url: http://arxiv.org/abs/2008.00199v1
- Date: Sat, 1 Aug 2020 07:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 01:02:54.975867
- Title: Green Offloading in Fog-Assisted IoT Systems: An Online Perspective
Integrating Learning and Control
- Title(参考訳): Fog-Assisted IoTシステムにおけるグリーンオフロード - 学習と制御を統合するオンラインパースペクティブ
- Authors: Xin Gao, Xi Huang, Ziyu Shao, Yang Yang
- Abstract要約: フォグアシスト型IoTシステムでは、タスク処理のレイテンシとエネルギー消費を減らすために、IoTデバイスから近隣のフォグノードにタスクをオフロードすることが一般的である。
本稿では,時間平均エネルギー消費の長期的制約を伴うマルチアームバンディット(CMAB)問題として,未知のシステムダイナミクスによるタスクオフロード問題を定式化する。
オンライン学習とオンライン制御の効果的な統合により,テキスト学習支援グリーンオフロード(LAGO)方式を提案する。
- 参考スコア(独自算出の注目度): 20.68436820937947
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In fog-assisted IoT systems, it is a common practice to offload tasks from
IoT devices to their nearby fog nodes to reduce task processing latencies and
energy consumptions. However, the design of online energy-efficient scheme is
still an open problem because of various uncertainties in system dynamics such
as processing capacities and transmission rates. Moreover, the decision-making
process is constrained by resource limits on fog nodes and IoT devices, making
the design even more complicated. In this paper, we formulate such a task
offloading problem with unknown system dynamics as a combinatorial multi-armed
bandit (CMAB) problem with long-term constraints on time-averaged energy
consumptions. Through an effective integration of online learning and online
control, we propose a \textit{Learning-Aided Green Offloading} (LAGO) scheme.
In LAGO, we employ bandit learning methods to handle the
exploitation-exploration tradeoff and utilize virtual queue techniques to deal
with the long-term constraints. Our theoretical analysis shows that LAGO can
reduce the average task latency with a tunable sublinear regret bound over a
finite time horizon and satisfy the long-term time-averaged energy constraints.
We conduct extensive simulations to verify such theoretical results.
- Abstract(参考訳): フォグアシスト型IoTシステムでは、タスク処理のレイテンシとエネルギー消費を減らすために、IoTデバイスから近隣のフォグノードにタスクをオフロードすることが一般的である。
しかし, 処理能力や伝送速度などのシステム力学に不確実性があるため, オンラインエネルギー効率スキームの設計は依然として未解決の課題である。
さらに、決定プロセスはフォグノードやIoTデバイスのリソース制限によって制約されるため、設計はさらに複雑になる。
本稿では,時間平均エネルギー消費の長期的制約を伴う組合せ型マルチアームバンドイット(CMAB)問題として,未知のシステムダイナミクスによるタスクオフロード問題を定式化する。
オンライン学習とオンライン制御の効果的な統合を通じて,lago(entextit{learning-aided green offloading})方式を提案する。
LAGOでは,悪用と探索のトレードオフを扱うために帯域学習法を採用し,長期的制約に対処するために仮想キュー技術を利用する。
理論的解析により,lagoは時間軸を有限に制限し,長期的平均エネルギー制約を満たすことで,平均的なタスク遅延を低減できることが示された。
このような理論結果を検証するために,広範なシミュレーションを行う。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
無人航空機(UAV)ネットワークはIoT(Internet-of-Things)を支援するための有望な技術である
既存のUAV支援データ収集および普及スキームでは、UAVはIoTとアクセスポイントの間を頻繁に飛行する必要がある。
協調ビームフォーミングをIoTとUAVに同時に導入し、エネルギーと時間効率のデータ収集と普及を実現した。
論文 参考訳(メタデータ) (2023-08-03T02:49:50Z) - A Fast Task Offloading Optimization Framework for IRS-Assisted
Multi-Access Edge Computing System [14.82292289994152]
我々は,IOPO(Iterative Order-Preserving Policy Optimization)と呼ばれるディープラーニングに基づく最適化フレームワークを提案する。
IOPOはエネルギー効率のよいタスクオフロード決定をミリ秒で生成できる。
実験の結果,提案フレームワークは短時間でエネルギー効率の高いタスクオフロード決定を生成できることがわかった。
論文 参考訳(メタデータ) (2023-07-17T13:32:02Z) - An Intelligent Deterministic Scheduling Method for Ultra-Low Latency
Communication in Edge Enabled Industrial Internet of Things [19.277349546331557]
時間知覚ネットワーク (TSN) は, 決定論的スケジューリングによる低遅延通信を実現するために最近研究されている。
非衝突理論に基づく決定論的スケジューリング (NDS) 法を提案し, 時間に敏感な流れに対する超低遅延通信を実現する。
実験の結果,NDS/DQSは決定論的超低レイテンシサービスを十分にサポートし,帯域幅の有効利用を保証できることがわかった。
論文 参考訳(メタデータ) (2022-07-17T16:52:51Z) - Adversarially Robust Learning for Security-Constrained Optimal Power
Flow [55.816266355623085]
我々は、N-kセキュリティ制約付き最適電力流(SCOPF)の課題に取り組む。
N-k SCOPFは電力網の運用における中核的な問題である。
N-k SCOPF を極小最適化問題とみなす。
論文 参考訳(メタデータ) (2021-11-12T22:08:10Z) - Short-Term Load Forecasting Using Time Pooling Deep Recurrent Neural
Network [0.0]
再生可能エネルギー源と電気自動車などの新興負荷をスマートグリッドに統合することは、配電系統管理に不確実性をもたらす。デマンドサイドマネジメント(DSM)は、不確実性を低減するためのアプローチの一つである。
Nonintrusive Load Monitoring (NILM) のようなアプリケーションは DSM をサポートすることができるが、高解像度データの正確な予測は必要である。
高いボラティリティのため、一戸建て住宅のような単一負荷の場合、これは難しい。
論文 参考訳(メタデータ) (2021-09-26T05:20:48Z) - Energy-Efficient Model Compression and Splitting for Collaborative
Inference Over Time-Varying Channels [52.60092598312894]
本稿では,エッジノードとリモートノード間のモデル圧縮と時間変化モデル分割を利用して,エッジデバイスにおける総エネルギーコストを削減する手法を提案する。
提案手法は, 検討されたベースラインと比較して, エネルギー消費が最小限であり, 排出コストが$CO$となる。
論文 参考訳(メタデータ) (2021-06-02T07:36:27Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
宇宙空間統合ネットワーク(SAGIN)における遅延指向モノのインターネット(IoT)サービスにおけるタスクスケジューリング問題について検討する。
検討されたシナリオでは、無人航空機(UAV)がIoTデバイスからコンピューティングタスクを収集し、オンラインのオフロード決定を行う。
我々の目的は、UAVエネルギー容量の制約により、タスクのオフロードと計算遅延を最小限に抑えるタスクスケジューリングポリシーを設計することである。
論文 参考訳(メタデータ) (2020-10-04T02:58:03Z) - Energy Minimization in UAV-Aided Networks: Actor-Critic Learning for
Constrained Scheduling Optimization [30.742052801257998]
無人航空機 (UAV) の応用においては、UAVの限られたエネルギー供給と貯蔵がインテリジェントなエネルギー保存ソリューションの開発を引き起こしている。
本稿では,データ転送スケジューリングホバリング時間を最適化するエネルギーDSOSソリューションについて検討する。
論文 参考訳(メタデータ) (2020-06-24T10:44:28Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Learning to Control PDEs with Differentiable Physics [102.36050646250871]
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
論文 参考訳(メタデータ) (2020-01-21T11:58:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。