論文の概要: Learning to Control PDEs with Differentiable Physics
- arxiv url: http://arxiv.org/abs/2001.07457v1
- Date: Tue, 21 Jan 2020 11:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 23:43:53.723059
- Title: Learning to Control PDEs with Differentiable Physics
- Title(参考訳): 微分物理学によるPDE制御の学習
- Authors: Philipp Holl, Vladlen Koltun, Nils Thuerey
- Abstract要約: 本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
本手法は,複雑な物理系の理解に成功し,PDEに関わるタスクに対してそれらを制御できることを実証する。
- 参考スコア(独自算出の注目度): 102.36050646250871
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting outcomes and planning interactions with the physical world are
long-standing goals for machine learning. A variety of such tasks involves
continuous physical systems, which can be described by partial differential
equations (PDEs) with many degrees of freedom. Existing methods that aim to
control the dynamics of such systems are typically limited to relatively short
time frames or a small number of interaction parameters. We present a novel
hierarchical predictor-corrector scheme which enables neural networks to learn
to understand and control complex nonlinear physical systems over long time
frames. We propose to split the problem into two distinct tasks: planning and
control. To this end, we introduce a predictor network that plans optimal
trajectories and a control network that infers the corresponding control
parameters. Both stages are trained end-to-end using a differentiable PDE
solver. We demonstrate that our method successfully develops an understanding
of complex physical systems and learns to control them for tasks involving PDEs
such as the incompressible Navier-Stokes equations.
- Abstract(参考訳): 物理世界との予測結果と計画的相互作用は、機械学習の長年の目標である。
このようなタスクには、多くの自由度を持つ偏微分方程式(PDE)によって記述できる連続的な物理系が含まれる。
このようなシステムのダイナミクスを制御しようとする既存の方法は通常、比較的短い時間フレームや少数の相互作用パラメータに限定される。
本稿では,ニューラルネットワークが長い時間をかけて複雑な非線形物理系の理解と制御を学べる新しい階層型予測器・相関器手法を提案する。
我々は,問題を計画と制御という2つの異なるタスクに分割することを提案する。
そこで本研究では,最適軌跡を計画する予測ネットワークと,対応する制御パラメータを推定する制御ネットワークを提案する。
どちらの段階も、微分可能PDEソルバを用いてエンドツーエンドで訓練される。
本手法は,複雑な物理系の理解を深め,非圧縮性ナビエ・ストークス方程式のようなpdesに関わるタスクに対してその制御法を学習できることを実証する。
関連論文リスト
- Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
ビデオからの自動パラメータ推定の最先端は、大規模データセット上で教師付きディープネットワークをトレーニングすることによって解決される。
単一ビデオから, 既知, 連続制御方程式の物理パラメータを推定する手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - Pretraining Codomain Attention Neural Operators for Solving Multiphysics PDEs [85.40198664108624]
PDEを用いた多物理問題の解法として,コドメイン注意ニューラル演算子(CoDA-NO)を提案する。
CoDA-NOはコドメインやチャネル空間に沿った機能をトークン化し、複数のPDEシステムの自己教師付き学習や事前訓練を可能にする。
CoDA-NOは、データ制限のある複雑な下流タスクにおいて、既存のメソッドを36%以上上回ります。
論文 参考訳(メタデータ) (2024-03-19T08:56:20Z) - iPINNs: Incremental learning for Physics-informed neural networks [66.4795381419701]
物理インフォームドニューラルネットワーク(PINN)は、最近偏微分方程式(PDE)を解く強力なツールとなっている。
本稿では,新しいタスクのパラメータを追加せずに連続的に複数のタスクを学習できるインクリメンタルPINNを提案する。
提案手法は,PDEごとに個別のサブネットワークを作成し,従来のサブネットワークと重なり合うようにすることで,最も単純なPDEから複数のPDEを学習する。
論文 参考訳(メタデータ) (2023-04-10T20:19:20Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Multi-resolution partial differential equations preserved learning
framework for spatiotemporal dynamics [11.981731023317945]
物理インフォームドディープラーニング(PiDL)は、物理原理をモデルに組み込むことによって、これらの課題に対処する。
我々は、ニューラルネットワークアーキテクチャに離散化された支配方程式を焼いて、物理の事前知識を活用することを提案する。
離散化されたPDEを畳み込み残差ネットワークを介して多分解能設定に埋め込むことにより、一般化可能性と長期予測を大幅に改善する。
論文 参考訳(メタデータ) (2022-05-09T01:27:58Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。