論文の概要: Curvature-Dependant Global Convergence Rates for Optimization on
Manifolds of Bounded Geometry
- arxiv url: http://arxiv.org/abs/2008.02517v1
- Date: Thu, 6 Aug 2020 08:30:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-02 07:55:49.998932
- Title: Curvature-Dependant Global Convergence Rates for Optimization on
Manifolds of Bounded Geometry
- Title(参考訳): 境界幾何多様体の最適化のための曲率依存性大域収束率
- Authors: Mario Lezcano-Casado
- Abstract要約: 1-有界幾何多様体上で定義される弱凸函数に対する曲率依存性収束率を与える。
最適化文献でよく用いられる多様体に対して、これらの境界を明示的に計算する。
指数写像の微分のノルムに完全一般境界の自己完備証明を与える。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We give curvature-dependant convergence rates for the optimization of weakly
convex functions defined on a manifold of 1-bounded geometry via Riemannian
gradient descent and via the dynamic trivialization algorithm. In order to do
this, we give a tighter bound on the norm of the Hessian of the Riemannian
exponential than the previously known. We compute these bounds explicitly for
some manifolds commonly used in the optimization literature such as the special
orthogonal group and the real Grassmannian. Along the way, we present
self-contained proofs of fully general bounds on the norm of the differential
of the exponential map and certain cosine inequalities on manifolds, which are
commonly used in optimization on manifolds.
- Abstract(参考訳): リーマン勾配勾配および動的自明化アルゴリズムにより 1-有界幾何多様体上で定義される弱凸関数の最適化に曲率依存収束率を与える。
これを行うために、私たちは以前に知られていたリーマン指数のヘッシアンのノルムにより厳密な境界を与える。
これらの境界を、特殊直交群や実グラスマン群のような最適化文献で一般的に用いられる多様体に対して明示的に計算する。
その過程で、指数写像の微分のノルム上の完全一般境界の自己完備な証明と、多様体の最適化によく用いられる多様体上のある種のコサイン不等式を示す。
関連論文リスト
- Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - Decentralized Riemannian Conjugate Gradient Method on the Stiefel
Manifold [59.73080197971106]
本稿では,最急降下法よりも高速に収束する一階共役最適化法を提案する。
これはスティーフェル多様体上の大域収束を達成することを目的としている。
論文 参考訳(メタデータ) (2023-08-21T08:02:16Z) - Warped geometric information on the optimisation of Euclidean functions [43.43598316339732]
我々は、潜在的に高次元ユークリッド空間で定義される実数値函数の最適化を考える。
函数の最適度は、曲がった計量を持つ多様体に沿う。
提案アルゴリズムは測地学の3次近似を用いており、標準ユークリッド勾配法よりも優れている傾向にある。
論文 参考訳(メタデータ) (2023-08-16T12:08:50Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - First-Order Algorithms for Min-Max Optimization in Geodesic Metric
Spaces [93.35384756718868]
min-maxアルゴリズムはユークリッド設定で解析されている。
指数関数法 (RCEG) が線形速度で最終収束を補正したことを証明した。
論文 参考訳(メタデータ) (2022-06-04T18:53:44Z) - Generalization in Supervised Learning Through Riemannian Contraction [4.3604518673788135]
教師付き学習環境では、計量 0 がアセシアンレート $lambda で収縮している場合、それは一様に$math であることを示す。
結果は、連続および安定な $-time において、勾配と決定論的損失曲面を保っている。
それらは、Descent$凸面や強い凸損失面など、ある種の線形な設定で最適であることを示すことができる。
論文 参考訳(メタデータ) (2022-01-17T23:08:47Z) - Global Riemannian Acceleration in Hyperbolic and Spherical Spaces [0.0]
第1次大域一階法によるユークリッド曲率の加速現象の研究
第一次方法は、加速勾配降下と同じ速度をユークリッド勾配で達成する。
論文 参考訳(メタデータ) (2020-12-07T12:09:30Z) - Random extrapolation for primal-dual coordinate descent [61.55967255151027]
本稿では,データ行列の疎度と目的関数の好適な構造に適応する,ランダムに外挿した原始-双対座標降下法を提案する。
一般凸凹の場合, 主対差と目的値に対するシーケンスのほぼ確実に収束と最適サブ線形収束率を示す。
論文 参考訳(メタデータ) (2020-07-13T17:39:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。