論文の概要: Deterministic error bounds for kernel-based learning techniques under
bounded noise
- arxiv url: http://arxiv.org/abs/2008.04005v3
- Date: Sat, 31 Jul 2021 16:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 23:39:13.280123
- Title: Deterministic error bounds for kernel-based learning techniques under
bounded noise
- Title(参考訳): 境界雑音下でのカーネルベース学習手法における決定論的誤差境界
- Authors: Emilio T. Maddalena, Paul Scharnhorst, Colin N. Jones
- Abstract要約: 本稿では,有限個のノイズ崩壊サンプルから関数を再構成する問題を考察する。
2つのカーネルアルゴリズム、すなわちカーネルリッジ回帰と$varepsilon$- Support vector regressionを解析する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of reconstructing a function from a finite set of
noise-corrupted samples. Two kernel algorithms are analyzed, namely kernel
ridge regression and $\varepsilon$-support vector regression. By assuming the
ground-truth function belongs to the reproducing kernel Hilbert space of the
chosen kernel, and the measurement noise affecting the dataset is bounded, we
adopt an approximation theory viewpoint to establish \textit{deterministic},
finite-sample error bounds for the two models. Finally, we discuss their
connection with Gaussian processes and two numerical examples are provided. In
establishing our inequalities, we hope to help bring the fields of
non-parametric kernel learning and system identification for robust control
closer to each other.
- Abstract(参考訳): 本稿では,有限個のノイズ崩壊サンプルから関数を再構成する問題を考察する。
2つのカーネルアルゴリズム、すなわちカーネルリッジ回帰と$\varepsilon$- Support vector regressionを解析する。
基底関数が選択されたカーネルの再生核ヒルベルト空間に属し、データセットに影響する測定ノイズが有界であると仮定することで、近似理論の視点を採用し、2つのモデルの有限サンプル誤差境界である \textit{ decisionistic} を確立する。
最後に, ガウス過程との関係について考察し, 2つの数値例を提案する。
不等式を確立することで、非パラメトリックカーネル学習の分野と、ロバストな制御のためのシステム識別を互いに近づけることを望んでいる。
関連論文リスト
- Learning dissipative Hamiltonian dynamics with reproducing kernel Hilbert spaces and random Fourier features [0.7510165488300369]
本稿では,限定的かつノイズの多いデータセットから散逸的ハミルトン力学を学習するための新しい手法を提案する。
この手法の性能は、2つの散逸するハミルトン系のシミュレーションで検証される。
論文 参考訳(メタデータ) (2024-10-24T11:35:39Z) - Epistemic Uncertainty and Observation Noise with the Neural Tangent Kernel [12.464924018243988]
近年の研究では、勾配降下による広いニューラルネットワークのトレーニングは、ガウス過程における後部分布の平均を計算することと正式に等価であることが示されている。
非ゼロアレタリックノイズに対処する方法を示し, 後部共分散推定器を導出する。
論文 参考訳(メタデータ) (2024-09-06T00:34:44Z) - Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise [19.496063739638924]
構造スパイクモデルに対するベイズ推定の飽和問題を考える。
適応的なThouless-Anderson-Palmer方程式の理論にインスパイアされた効率的なアルゴリズムを用いて、統計的限界を予測する方法を示す。
論文 参考訳(メタデータ) (2024-05-31T16:38:35Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Score-based Diffusion Models in Function Space [140.792362459734]
拡散モデルは、最近、生成モデリングの強力なフレームワークとして登場した。
本稿では,関数空間における拡散モデルをトレーニングするためのDDO(Denoising Diffusion Operators)という,数学的に厳密なフレームワークを提案する。
データ解像度に依存しない固定コストで、対応する離散化アルゴリズムが正確なサンプルを生成することを示す。
論文 参考訳(メタデータ) (2023-02-14T23:50:53Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
ヒルベルト空間の既知の低次元部分空間を探索することにより、確率観測の集合を用いて近似解を計算する手法を検討する。
本稿では,線形関数近似を用いた政策評価問題に対する時間差分学習手法の誤差を正確に評価する方法について述べる。
論文 参考訳(メタデータ) (2020-12-09T20:19:32Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
相互作用粒子の1次系に対する平均場方程式の相互作用核を学習するための非パラメトリックアルゴリズムを提案する。
少なくとも正則化と二乗することにより、アルゴリズムはデータ適応仮説空間上でカーネルを効率的に学習する。
論文 参考訳(メタデータ) (2020-10-29T15:37:17Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
半パラメトリック指数族分布におけるパラメータの統計的推定問題として、両部グラフを考察し、その表現学習問題を定式化する。
提案手法は, 地中真理付近で強い凸性を示すため, 勾配降下法が線形収束率を達成できることを示す。
我々の推定器は指数族内の任意のモデル誤特定に対して頑健であり、広範な実験で検証されている。
論文 参考訳(メタデータ) (2020-03-02T16:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。