論文の概要: Dialogue State Induction Using Neural Latent Variable Models
- arxiv url: http://arxiv.org/abs/2008.05666v1
- Date: Thu, 13 Aug 2020 03:14:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 23:03:25.432015
- Title: Dialogue State Induction Using Neural Latent Variable Models
- Title(参考訳): ニューラル潜在変数モデルを用いた対話状態誘導
- Authors: Qingkai Min, Libo Qin, Zhiyang Teng, Xiao Liu, Yue Zhang
- Abstract要約: 本稿では、未ラベルの顧客サービス対話記録から対話状態を自動的にマイニングする2つのニューラル潜在変数モデルを構築し、対話状態誘導の課題を提案する。
結果は、モデルが意味のあるスロットを効果的に見つけることができることを示している。
最先端の対話システムでは,対話状態モジュールを使用しない場合に比べ,パフォーマンスが向上する。
- 参考スコア(独自算出の注目度): 28.94392864885589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dialogue state modules are a useful component in a task-oriented dialogue
system. Traditional methods find dialogue states by manually labeling training
corpora, upon which neural models are trained. However, the labeling process
can be costly, slow, error-prone, and more importantly, cannot cover the vast
range of domains in real-world dialogues for customer service. We propose the
task of dialogue state induction, building two neural latent variable models
that mine dialogue states automatically from unlabeled customer service
dialogue records. Results show that the models can effectively find meaningful
slots. In addition, equipped with induced dialogue states, a state-of-the-art
dialogue system gives better performance compared with not using a dialogue
state module.
- Abstract(参考訳): 対話状態モジュールはタスク指向対話システムにおいて有用なコンポーネントである。
従来の方法では、トレーニングコーパスを手作業でラベル付けすることで対話状態を見つける。
しかし、ラベル付けプロセスはコストがかかり、遅く、エラーが発生し、さらに重要なのは、カスタマーサービスのための現実世界の対話において、広範囲のドメインをカバーできないことだ。
本研究では,ラベルなしの顧客サービス対話記録から自動的に対話状態をマイニングする2つのニューラル潜在変数モデルを構築し,対話状態誘導のタスクを提案する。
結果は、モデルが効果的に有意義なスロットを見つけることができることを示している。
また、誘導対話状態を備えた最先端対話システムは、対話状態モジュールを使用しないよりも優れた性能を提供する。
関連論文リスト
- Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
本稿では,対話状態追跡のような複雑な環境下でのアートシステムのエラーを包括的に解析する。
音声MultiWozに基づいて、音声対話システムとチャットベースの対話システムとのギャップを埋めるためには、非カテゴリースロットの値の誤差に対処することが不可欠である。
論文 参考訳(メタデータ) (2023-11-03T08:45:22Z) - Contextual Data Augmentation for Task-Oriented Dialog Systems [8.085645180329417]
本研究では,ユーザターンを生成する新しいダイアログ拡張モデルを構築し,完全なダイアログコンテキストを条件づける。
言語モデルの新しいプロンプト設計と出力の再ランク付けにより、我々のモデルから生成されたダイアログを直接使用して、下流ダイアログシステムのトレーニングを行うことができる。
論文 参考訳(メタデータ) (2023-10-16T13:22:34Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
抽象的な対話要約は、自然言語処理における重要なスタンドアロンタスクとみなされてきた。
本稿では,新たな対話要約タスクであるSTRUctured DiaLoguE Summarizationを提案する。
変換器エンコーダ言語モデルの対話理解性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-24T04:39:54Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Act-Aware Slot-Value Predicting in Multi-Domain Dialogue State Tracking [5.816391291790977]
対話状態追跡(DST)は、人間と機械の相互作用を追跡し、対話を管理するための状態表現を生成することを目的としている。
機械読解の最近の進歩は、対話状態追跡のための分類型と非分類型のスロットの両方を予測する。
我々は対話行為を定式化し、機械読解の最近の進歩を活用し、対話状態追跡のためのカテゴリー型と非カテゴリ型の両方のスロットを予測する。
論文 参考訳(メタデータ) (2022-08-04T05:18:30Z) - Structure Extraction in Task-Oriented Dialogues with Slot Clustering [94.27806592467537]
タスク指向対話では、対話構造はしばしば対話状態間の遷移グラフと見なされている。
本稿では,タスク指向対話における構造抽出のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T20:18:12Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
上記の2つのスキルを備えた統合対話システム(UniDS)を提案する。
我々は、チャットとタスク指向の対話の両方に対応可能な統合対話データスキーマを設計する。
我々は、事前訓練されたチャット対話モデルから混合対話データでUniDSを訓練する。
論文 参考訳(メタデータ) (2021-10-15T11:56:47Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learnerは、ダイアログマネージャを構築するための機械学習ツールである。
ダイアログ作成者が慣れ親しんだツールを使ってダイアログフローを作成し、ダイアログフローをパラメトリックモデルに変換することができる。
ユーザシステムダイアログをトレーニングデータとして活用することで、ダイアログ作成者が時間とともにダイアログマネージャを改善することができる。
論文 参考訳(メタデータ) (2020-04-09T00:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。