Ultrastrong Magnon-Magnon Coupling Dominated by Antiresonant
Interactions
- URL: http://arxiv.org/abs/2008.10721v2
- Date: Sun, 7 Feb 2021 19:41:51 GMT
- Title: Ultrastrong Magnon-Magnon Coupling Dominated by Antiresonant
Interactions
- Authors: Takuma Makihara, Kenji Hayashida, G. Timothy Noe II, Xinwei Li,
Nicolas Marquez Peraca, Xiaoxuan Ma, Zuanming Jin, Wei Ren, Guohong Ma,
Ikufumi Katayama, Jun Takeda, Hiroyuki Nojiri, Dmitry Turchinovich, Shixun
Cao, Motoaki Bamba, Junichiro Kono
- Abstract summary: We report an unusual coupled matter-matter system of magnons that can simulate a unique cavity QED Hamiltonian.
We found a novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions.
- Score: 3.1154125686049228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exotic quantum vacuum phenomena are predicted in cavity quantum
electrodynamics (QED) systems with ultrastrong light-matter interactions. Their
ground states are predicted to be vacuum squeezed states with suppressed
quantum fluctuations. The source of such phenomena are antiresonant terms in
the Hamiltonian, yet antiresonant interactions are typically negligible
compared to resonant interactions in light-matter systems. We report an unusual
coupled matter-matter system of magnons that can simulate a unique cavity QED
Hamiltonian with coupling strengths that are easily tunable into the
ultrastrong coupling regime and with dominant antiresonant terms. We found a
novel regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant
interactions, greatly exceed analogous frequency shifts from resonant
interactions. Further, we theoretically explored the system's ground state and
calculated up to 5.9 dB of quantum fluctuation suppression. These observations
demonstrate that magnonic systems provide an ideal platform for simulating
exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter
systems.
Related papers
- Quantum-induced Stochastic Optomechanical Dynamics [0.0]
Quantum fluctuations lead to state-dependent non-equilibrium noise, which is exponentially enhanced by wavepacket delocalization.
For the case of nanoparticles coupled by the Coulomb interaction such noise can imprint potentially measurable signatures in multiparticle levitation experiments.
arXiv Detail & Related papers (2024-01-29T19:30:21Z) - Light-matter interactions in the vacuum of ultra-strongly coupled systems [0.0]
We study how the peculiar properties of the vacuum state of an ultra-strongly coupled system can affect basic light-matter interaction processes.
In this unconventional electromagnetic environment, an additional emitter no longer couples to the bare cavity photons, but rather to the polariton modes emerging from the ultra-strong coupling.
arXiv Detail & Related papers (2023-12-26T19:00:08Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
We show that even off-resonant drives can cause strong modifications to the structure of the transmon spectrum rendering a large part of it chaotic.
Results lead to a photon number threshold characterizing the appearance of chaos-induced quantum demolition effects.
arXiv Detail & Related papers (2022-07-19T16:04:46Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Fractional resonances and prethermal states in Floquet systems [0.0]
In periodically-driven quantum systems, resonances can induce exotic nonequilibrium behavior and new phases of matter without static analog.
We report on the emergence of fractional and integer resonances in a broad class of many-body Hamiltonians with a modulated hopping with a frequency that is either a fraction or an integer of the on-site interaction.
Our findings reveal novel features of the nonequilibrium quantum many-body system, such as the coexistence of Floquet prethermalization and localization.
arXiv Detail & Related papers (2021-11-12T21:35:20Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Unconventional magnon excitation by off-resonant microwaves [0.3806109052869554]
Off-resonant phenomena are rarely considered because of the difficulty to realize strong coupling between physical systems and off-resonant waves.
Here we examine the response of a magnetic system to squeezed light and surprisingly find that the magnons are maximally excited.
Our findings may provide an unconventional route to study off-resonant phenomena and may further benefit the use of hybrid matter-light systems in continuous variable quantum information.
arXiv Detail & Related papers (2020-09-16T21:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.